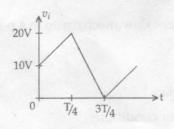
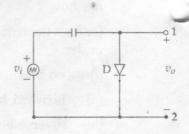
(Following Paper ID as				
PAPER ID:3033	Roll No.			

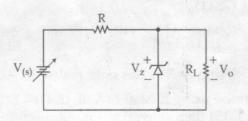
B.Tech.

FIRST SEMESTER EXAMINATION, 2005-2006

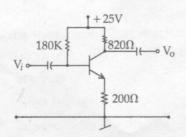

ELECTRONICS ENGINEERING

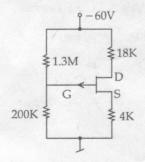

Time: 3 Hours Total Marks: 100

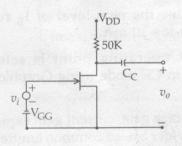
Note: (i) Answer ALL questions.

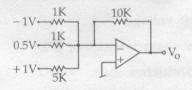

- (ii) All questions carry equal marks.
- (iii) In case of numerical problems assume data wherever not provided.
- (iv) Be precise in your answer.
- 1. Attempt any four of the following questions: (5x4=20)
 - (a) Distinguish between intrinsic and extrinsic semiconductor. What is the effect of temperature on conductivity of a semiconductor?
 - (b) How are the carrier mobilities related with resistivity of a semiconductor? Does a 'hole' in a semiconductor contribute to a flow of current? If yes, how and if no, how?
 - (c) Discuss the current flow mechanism in a p-n junction under -
 - (i) no bias
 - (ii) forward bias
 - (iii) reverse bias conditions.

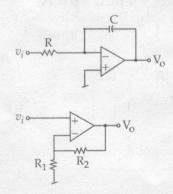
- (d) A germanium diode carries a current of 1mA at room temperature when a forward bias of 0.15V is applied. Estimate the reverse saturation current at room temperature.
- (e) Which is more sensitive to a change in temperature, forward current or reverse current? Explain why?
- (f) Explain, the transition capacitance and diffusion capacitance of a p-n junction.
- 2. Attempt any two of the following questions: (10x2=20)
 - (a) What is transformer utilisation factor? Determine the rating of a transformer to deliver a 100 Watts of d.c. power to a load under full wave rectifier.
 - (b) Distinguish between clipping and clamping circuits. Draw the waveform observed on an oscilloscope in dc mode when connected between 1 and 2 of the following circuit with shown v_i applied. Indicate voltages and the zero level. Also give the numerical values of the reading of a d.c. voltmeter connected across 1 and 2. Find the PIV of the diode.




(c) Explain 'Avalanche' break down. Draw the v-i characteristics of zener diode and explain how does a zener regulate a voltage? The input voltage for the following figure varies from 35V to 45V, $V_z = 20V r_z = 5\Omega I_I (min) = 0 mA$, $I_{T}(max) = 100mA$, Iz(min) = 10mA, Iz(max) = 400mA. Find the values of R and P_Z (max).


- 3. Attempt any four of the following questions: (5x4=20)
 - (a) Define with respect to BJT the following.
 - (i) I_{CO}
- (ii) α
- (iii) B
- (iv) I_{CFO} (v) I_{CBO}
- Draw and explain the input and output (b) charecteristics of common base configuration of BJT. Indicate all the region of operations.
- (c) Find Ic and V_{CE} for the following circuit if $\beta = 80$ for the BIT.


- (d) The collector and base current of n-pn transistor are measured as $I_{c}=5$ mA, $I_{b}=50$ μ A and $I_{c}=1$ μ A.
 - (i) Determine α , β and I_E .
 - (ii) Determine the new level of I_B required to produce $I_B = 10$ mA.
 - (e) Explain how operating point is selected for amplification in CE mode using Graphical method only.
 - (f) Derive the voltage gain, current gain expressions for a potential devider biased common emitter amplifie using h parameters.
- 4. Attempt any two of the following questions: (10x2=20)
 - (a) Write notes on the following:
 - (i) depletion type MOSFET
 - (ii) Pinch-off voltage
 - (iii) Transfer characteristics of JFET
 - (iv) Transconductance
 - (b) Consider the following circuit. Determine I_D , V_{GS} and V_{DS} for $|I_{DSS}| = 4$ mA, $V_D = 4V$.


(c) Calculate the voltage gain and output resistance of the following circuit. Given that gm = 2mA/V and $v_d = 10k$.

- 5. Attempt any four of the following questions: (5x4=20)
 - (a) Enlist the ideal characteristics of an op-amp. Why op-amp is called operational amplifier. Find out the voltage output of the following circuit.

(b) Determine the output of both of the circuits.

- (c) Convert the following numbers as indicated:
 - (i) $(1001)_8 = ()_2$
 - (ii) $(2CCD)_{16} = ()_5$
 - (iii) $(0.45)_{10} = ()_8$
 - (iv) $(345)_8 = ()_{10}$
 - $(v) (7841)_9 = ()_{10}$
 - (d) (i) Realise AND, OR, NOT using only NAND gates.
 - (ii) Using NOR gates only realise Ex-OR gate.
 - (e) Minimise using K-Map f (A, B, C, D) = Σ (1, 3, 5, 7, 9, 11, 13, 15) then convert the minimised function into POS.
 - (f) Write notes on the following:
 - (i) Demorgan's Theorem
 - (ii) Canonical form of Boolean function

-000-