(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 3033 Roll No.

\square

B.Tech.

FIRST SEMESTER EXAMINATION, 2005-2006

ELECTRONICS ENGINEERING

Iime: 3 Hours

Total Marks : 100
Note: (i) Answer ALL questions.
(ii) All questions carry equal marks.
(iii) In case of numerical problems assume data wherever not provided.
(iv) Be precise in your answer.

1. Attempt any four of the following questions: $\quad(5 \times 4=20)$
(a) Distinguish between intrinsic and extrinsic semiconductor. What is the effect of temperature on conductivity of a semiconductor ?
(b) How are the carrier mobilities related with resistivity of a semiconductor? Does a 'hole' in a semiconductor contribute to a flow of current ? If yes, how and if no, how ?
(c) Discuss the current flow mechanism in a p-n junction under -
(i) no bias
(ii) forward bias
(iii) reverse bias conditions.
(d) A germanium diode carries a current of 1 mA at room temperature when a forward bias of 0.15 V is applied. Estimate the reverse saturation current at room temperature.
(e) Which is more sensitive to a change in temperature, forward current or reverse current ? Explain why ?
(f) Explain, the transition capacitance and diffusion capacitance of a p-n junction.
2. Attempt any two of the following questions: $\quad(\mathbf{1 0 \times 2}=\mathbf{2 0})$
(a) What is transformer utilisation factor ? Determine the rating of a transformer to deliver a 100 Watts of d.c. power to a load under full wave rectifier.
(b) Distinguish between clipping and clamping circuits. Draw the waveform observed on an oscilloscope in dc mode when connected between 1 and 2 of the following circuit with shown v_{i} applied. Indicate voltages and the zero level. Also give the numerical values of the reading of a d.c. voltmeter connected across 1 and 2. Find the PIV of the diode.

(c) Explain 'Avalanche' break down. Draw the $v-i$ characteristics of zener diode and explain how does a zener regulate a voltage? The input voltage for the following figure varies from 35 V to $45 \mathrm{~V}, \mathrm{~V}_{\mathrm{Z}}=20 \mathrm{~V} \mathrm{r}_{\mathrm{Z}}=5 \Omega \mathrm{I}_{\mathrm{L}}(\mathrm{min})=0 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{L}}(\max)=100 \mathrm{~mA}, \mathrm{Iz}(\min)=10 \mathrm{~mA}, \mathrm{Iz}(\max)=400 \mathrm{~mA}$. Find the values of R and $\mathrm{P}_{\mathrm{Z}}(\max)$.

3. Attempt any four of the following questions: ($5 \times 4=20)$
(a) Define with respect to BJT the following.
(i) I_{CO}
(ii) α
(iii) β
(iv) $\mathrm{I}_{\mathrm{CEO}}$
(v) $\mathrm{I}_{\mathrm{CBO}}$
(b) Draw and explain the input and output charecteristics of common base configuration of BJT. Indicate all the region of operations.
(c) Find Ic and $V_{C E}$ for the following circuit if $\beta=80$ for the BJT.

(d) The collector and base current of n-pn transistor are measured as Ic $=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{cBo}}=1 \mu \mathrm{~A}$.
(i) Determine α, β and I_{E}.
(ii) Determine the new level of I_{B} required to produce Ic $=10 \mathrm{~mA}$.
(e) Explain how operating point is selected for amplification in CE mode using Graphical method only.
(f) Derive the voltage gain, current gain expressions for a potential devider biased common emitter amplifie using h parameters.
4. Attempt any two of the following questions: $\quad(\mathbf{1 0} \times 2=\mathbf{2 0})$
(a) Write notes on the following :
(i) depletion type MOSFET
(ii) Pinch-off voltage
(iii) Transfer characteristics of JFET
(iv) Transconductance
(b) Consider the following circuit. Determine $\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{GS}}$ and V_{DS} for $\left|\mathrm{I}_{\mathrm{DSS}}\right|=4 \mathrm{~mA}, \mathrm{Vp}=4 \mathrm{~V}$.

(c) Calculate the voltage gain and output resistance of the following circuit. Given that $\mathrm{gm}=2 \mathrm{~mA} / \mathrm{V}$ and $\mathrm{v}_{\mathrm{d}}=10 \mathrm{k}$.

5. Attempt any four of the following questions: $\quad(5 \times 4=20)$
(a) Enlist the ideal characteristics of an op-amp. Why op-amp is called operational amplifier. Find out the voltage output of the following circuit.

(b) Determine the output of both of the circuits.

(c) Convert the following numbers as indicated:
(i) $\left.\begin{array}{lll}(1001)_{8} & =(&)_{2} \\ \text { (ii) }(2 C C D)_{16} & =(&)_{5} \\ \text { (iii) }(0.45)_{10} & =(&)_{8} \\ \text { (iv) }(345)_{8} & =(&)_{10} \\ \text { (v) } & (7841)_{9} & =(\end{array}\right) 10$
(d) (i) Realise AND, OR, NOT using only NAND gates.
(ii) Using NOR gates only realise Ex-OR gate.
(e) Minimise using K-Map f (A, B, C, D) $=\Sigma(1,3,5,7,9$, $11,13,15)$ then convert the minimised function into POS.
(f) Write notes on the following:
(i) Demorgan's Theorem
(ii) Canonical form of Boolean function

- o Oo -

