(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 9906 9916

 Roll No. \square
B.Tech.

FIRST SEMESTER EXAMINATION, 2005-2006

MATHEMATICS - I

Time : 3 Hours
Total Marks : 100
Note : (i) Attempt ALL questions.
(ii) All questions carry equal marks.
(iii) Question no. 1-4 are common to all candidates.
(iv) Be precise in your answer.

1. Attempt any four parts of the following :
($5 \times 4=20$)
(a) Use elementary transformation to reduce the following matrix A to triangular form and hence find the rank of A.

$$
A=\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

(b) Define Unitary Matrix. Show that the matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\alpha+i \gamma & -\beta+i \delta \\
\beta+i \delta & \alpha-i \gamma
\end{array}\right] \text { is a unitary matrix if }} \\
& \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1 .
\end{aligned}
$$

(c) Reduce the matrix A to diagonal form

$$
\mathrm{A}=\left[\begin{array}{rrr}
-1 & 2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

(d) Find the eigen values and eigen vectors of matrix A

$$
A=\left[\begin{array}{ccc}
1 & 7 & 13 \\
2 & 5 & 7 \\
3 & 11 & 5
\end{array}\right]
$$

(e) Test the consistency of following system of linear equations and hence find the solution

$$
\begin{array}{ll}
4 x_{1}-x_{2} & =12 \\
-x_{1}+5 x_{2}-2 x_{3} & =0 \\
-2 x_{2}+4 x_{3} & =-8
\end{array}
$$

(f) State Cayley-Hamiltan theorem. Using this theorem find the inverse of the matrix.

$$
\mathrm{A}=\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

2. Attempt any four parts of the following :
(a) Find the directional derivative of $\frac{1}{\mathrm{r}^{2}}$ in the direction of \vec{r}, where $\vec{r}=\hat{i} x+\hat{j} y+\hat{k} z$.
(b) Find $\iint \vec{F} . \hat{n} d s$, where
$\overrightarrow{\mathrm{F}}=(2 x+3 \mathrm{z}) \hat{i}-(x \mathrm{z}+\mathrm{y}) \hat{j}+\left(\mathrm{y}^{2}+2 \mathrm{z}\right) \hat{k}$ and s is the surface of sphere having centre $(3,-1,2)$ and radius 3 .
(c) Show that the vector field $\vec{F}=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$ is irrotational as well as solenoidal. Find the scalar potential.
(d) If $\overrightarrow{\mathrm{A}}$ is a vector function and ϕ is a scalar function, then show that $\nabla \cdot(\phi \overrightarrow{\mathrm{A}})=\phi \nabla \cdot \overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{A}} \cdot \nabla \phi$.
(e) Apply Green's theorem to evaluate
$\oint_{C} 2 y^{2} d x+3 x d y$ where c is the boundary of closed region bounded between $\mathrm{y}=x$ and $\mathrm{y}=x^{2}$.
(f) Suppose $\overrightarrow{\mathrm{F}}(x, y, z)=x^{3} \hat{i}+y \hat{j}+z \hat{k}$ is the force field. Find the work done by $\overrightarrow{\mathrm{F}}$ along the line from the $(1,2,3)$ to $(3,5,7)$.
3. Attempt any four parts of the following :
$(5 \times 4=20)$
(a) If $\mathrm{y}=\left(\sin ^{-1} x\right)^{2}$, prove that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0 .
$$

Hence find the value of y_{n} at $x=0$.
(b) If $\mathrm{u}=f(\mathrm{r})$ and $x=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$, prove that $\frac{\partial^{2} \mathbf{u}}{\partial x^{2}}+\frac{\partial^{2} \mathbf{u}}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)$.
(c) Trace the cure $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(d) Expand $\tan ^{-1}\left(\frac{y}{x}\right)$ in the neighbourhood of $(1,1)$.
(e) If $\mathrm{u}=x \log (x y)$, where $x^{3}+\mathrm{y}^{3}+3 x \mathrm{y}=1$. Find $\frac{\mathrm{du}}{\mathrm{d} x}$.
(f) State Euler's theorem of differential calculus. Hence verify the theorem for the function $\mathrm{u}=\log \frac{x^{2}+\mathrm{y}^{2}}{x y}$.
4. Attempt any two parts of the following :
(10x2=20)
(a) If J be the Jacobian of the system u, v with regard to x, y and J^{\prime} the Jacobian of the system x, y with regard to u, v, then prove that $\mathrm{JJ}^{\prime}=1$.
(b) A rectangular box open at top is to have a given capacity. Find the dimensions of the box requiring least material.
(c) A balloon is in the form of right circular cylinder of radius 1.5 m and length 4.0 m and is surmounted by hemispherical ends. If the radius is increased by 0.01 m and length by 0.05 m , find the percentage change in the volume of balloon.

FOR NEW SYLLABUS ONLY (TAS-104/MA-101)

5. Attempt any two parts of the following :
(10x2=20)
(a) Evaluate the integral $\int_{0}^{\infty} \int_{0}^{x} x \exp \left(-\frac{x^{2}}{y}\right) \mathrm{dyd} x$ by changing the order of integration.
(b) Find by triple integration, the volume of the paraboloid of revolution $x^{2}+y^{2}=4 z$ cut off by the plane $z=4$.
(c) State the Dirichlet's theorem for three variables. Hence evaluate the integral
$\iiint x^{l-1} y^{\mathrm{m}-1} \mathrm{z}^{\mathrm{n}-1} \mathrm{~d} x \mathrm{dydz}$.
where x, y, z are all positive but limited by the condition $\left(\frac{x}{a}\right)^{p}+\left(\frac{y}{b}\right)^{q}+\left(\frac{z}{c}\right)^{r} \leq 1$.

FOR OLD SYLLABUS ONLY MA-101 (OLD)

5. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) The following data regarding the heights (y) and weights (x) of 100 college students are given $\Sigma x=15000, \Sigma x^{2}=2272500, \Sigma y=6800, \Sigma y=463025$ and $\Sigma x y=1022250$.

Find the correlation coefficient between height and weight and equation of regression line of height on weight.
(b) Fit a Poisson distribution to the following data and calculate the theoretical frequencies.

x	0	1	2	3	4
f	192	100	24	3	1

(c) Assume the mean height of soldiers to be 68.22 inches with a variance of 10.8 inches square. How many soldiers in a regiment of 10,000 would you expect to be over 6 feet tall, given that the area under the standard normal curve between $x=0$ and $x=0.31$ is 0.1368 and between $x=0$ and $x=1.15$ is 0.3746 .

- o Oo -

FOR OLD SYLLABUS ONLY MA-101 (OLD)

5. Attempt any two parts of the following :
($10 \times 2=20$)
(a) The following data regarding the heights (y) and weights (x) of 100 college students are given $\Sigma x=15000, \Sigma x^{2}=2272500, \Sigma \mathrm{y}=6800, \Sigma \mathrm{y}=463025$ and $\Sigma x y=1022250$.
Find the correlation coefficient between height and weight and equation of regression line of height on weight.
(b) Fit a Poisson distribution to the following data and calculate the theoretical frequencies.

x	0	1	2	3	4
f	192	100	24	3	1

(c) Assume the mean height of soldiers to be 68.22 inches with a variance of 10.8 inches square. How many soldiers in a regiment of 10,000 would you expect to be over 6 feet tall, given that the area under the standard normal curve between $x=0$ and $x=0.31$ is 0.1368 and between $x=0$ and $x=1.15$ is 0.3746 .

