						101
(Following Paper ID a	nd Roll No. to	be fill	ed in y	our A	nswer B	ook)
PAPER ID:3033	Roll No.				102	

B.Tech.

FIRST SEMESTER EXAMINATION, 2006-07

ELECTRONICS ENGINEERING

Time : 3 Hours

Printed Pages - 6

Total Marks : 100

TEC - 101

- Note : (i) Attempt ALL questions.
 - (ii) All questions carry equal marks.
 - (iii) In case of numerical problems assume data wherever not provided.
 - (iv) Be precise in your answer.
- 1. Attempt *any four* parts of the following : (5x4=20)
 - (a) Define an intrinsic material, a negative temperature coefficient, and covalent bonding. List three materials that have negative temperature coefficient.
 - (b) Differentiate among conductor, insulator and semiconductor using energy band concept. Also differentiate between n-type and p-type semiconductor materials.
 - (c) Explain the behaviour of p-n junction at no bias, reverse bias and forward bias. Sketch the v-i characteristics of p-n junction diode.
 - (d) Explain how you will determine the static resistance and dynamic resistance of p-n junction diode after defining both of them.

TEC-101

3

σ

0469

[Turn Over

(d) Sketch the V_o for the following circuit.

(e) Calculate the values of R_s and R_L to maintain V_L at 12 V for I_L to vary from 0 to 200 mA. Also find V_z and P_{zmax} .

(f) Explain the working of a voltage doubler with neat diagram.

3. Attempt *any two* parts of the following : (10x2=20)

- (a) (i) What is the major difference between a bipolar and a unipolar device ?
 - (ii) How must the two transistor junctions be biased for proper transistor amplifier operation ?
 - (iii) Which of the transistor currents is always the largest ? Which is always the smallest ? Which two currents are relatively closed in magnitude ?
 - (iv) In how many modes the BJT works? Also explain the biasing pattern for each of them.
 - (v) How many types of biasing are done on a BJT to work properly as an amplifier ? Which one is the best and why ?

TEC-101

- (e) What do you understand by average current, repetitive peak current, non-repetitive current, peak-inverse voltage and reverse saturation current ?
- (f) What are the differences between diffusion and transition capacitance ? How will you represent the capacitive effect of a practical diode on an ideal iode ?

Attempt *any four* parts of the following : (5x4=20) (a) Calculate V_o and ID for the following :

(b) Determine V_o and required PIV rating of each of the diodes of the following circuit :

(c) Determine V_o for the following circuit. Also name the configuration.

2

(b) Calculate $I_{B'}$, $I_{C'}$, V_E and V_{CE} for the following circuit if $\beta = 130$.

- Calculate the following using hybrid equivalent model for the following circuit where hfc = 110
 - hoe = $20 \frac{\mu A}{V}$. (i) Zi (ii) Zo (iii) Av (iv) Ai

(c)

4. Attempt any two parts of the following :

(10x2=20)

(a) Explain the working of a JFET along with its construction with neat sketch. Also draw its transfer characteristic curve with explanation.

TEC-101

[Turn Over

(b) Determine the following : (i) I_{DQ} , V_{GSQ} (ii) V_{DS} (iii) V_D (iv) V_S

(c) Calculate Z_i , Z_o and A_v for the following circuit :

5. Attempt *any four* parts of the following :(a) Convert the following bases :

(i)
$$(11011.011)_{10} \rightarrow ()_{10}$$

(ii) $(2AC9)_{16} \rightarrow ()_7$

- (b) What are universal gates and why ?
- (c) Minimise the following using k-map.

 $f = \Sigma m (1, 2, 5, 7, 9, 15) + \phi \Sigma m (0, 3, 4, 6)$

(5x4=20)

TEC-101

5

[Turn Over

- (d) Enlist the ideal characteristics of an ideal operational amplifier. Also draw the circuit of a non-inverting amplifier.
- (e) What is the range of the voltage-gain adjustment in the following circuit ?

(f) Find the output voltage of the following circuit.

TEC-101