(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID:3033 Roll No.

\square

B.Tech.

FIRST SEMESTER EXAMINATION. 2006-07

ELECTRONICS ENGINEERING

Time : 3 Hours
Total Marks : 100
Note: (i) Attempt ALL questions.
(ii) All questions carry equal marks.
(iii) In case of numerical problems assume data wherever not provided.
(iv) Be precise in your answer.

1. Attempt any four parts of the following :
(a) Define an intrinsic material, a negative temperature coefficient, and covalent bonding. List three materials that have negative temperature coefficient.
(b) Differentiate among conductor, insulator and semiconductor using energy band concept. Also differentiate between n-type and p-type semiconductor materials.
(c) Explain the behaviour of p-n junction at no bias, reverse bias and forward bias. Sketch the v-i characteristics of p-n junction diode.
(d) Explain how you will determine the static resistance and dynamic resistance of p-n junction diode after defining both of them.
(d) Sketch the V_{o} for the following circuit.

(e) Calçulate the values of R_{s} and R_{L} to maintain V_{L} at 12 V for I_{L} to vary from 0 to 200 mA . Also find V_{z} and $P_{z \max }$.

(f) Explain the working of a voltage doubler with neat diagram.
2. Attempt any two parts of the following :
(a) (i) What is the major difference between a bipolar and a unipolar device ?
(ii) How must the two transistor junctions be biased for proper transistor amplifier operation ?
(iii) Which of the transistor currents is always the largest? Which is always the smallest ? Which two currents are relatively closed in magnitude ?
(iv) In how many modes the BJT works ? Also explain the biasing pattern for each of them.
(v) How many types of biasing are done on a BJT to work properly as an amplifier ? Which one is the best and why ?
(e) What do you understand by average current, repetitive peak current, non-repetitive current, peak-inverse voltage and reverse saturation current?
(f) What are the differences between diffusion and transition capacitance? How will you represent the capacitive effect of a practical diode on an ideal iode?

Attempt any four parts of the following:
$(5 \times 4=20)$
(a) Calculate V_{o} and ID for the following:

(b) Determine V_{o} and required PIV rating of each of the diodes of the following circuit :

(c) Determine V_{o} for the following circuit. Also name the configuration.

(b) Calculate I_{B}, I_{C}, V_{E} and $V_{C E}$ for the following circuit if $\beta=130$.

(c) Calculate the following using hybrid equivalent model for the following circuit where $\mathrm{hfc}=110$ hoe $=20 \frac{\mu \mathrm{~A}}{\mathrm{~V}}$.
(i) Zi
(ii) Zo
(iii) Av
(iv) Ai

4. Attempt any two parts of the following: $\quad(10 \times 2=20)$
(a) Explain the working of a JFET along with its construction with neat sketch. Also draw its transfer characteristic curve with explanation.
(b) Determine the following :
(i) $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{GSQ}}$
(ii) $V_{D S}$
(iii) V_{D}
(iv) V_{S}

(c) Calculate Z_{i}, Z_{o} and A_{v} for the following circuit :

5. Attempt any four parts of the following :
(a) Convert the following bases:
(i) $(11011.011)_{10} \rightarrow()_{16}$
(ii) $\quad(2 \mathrm{AC} 9)_{16} \rightarrow()_{7}$
(b) What are universal gates and why ?
(c) Minimise the following using k-map.

$$
f=\Sigma \mathrm{m}(1,2,5,7,9,15)+\phi \Sigma \mathrm{m}(0,3,4,6)
$$

(d) Enlist the ideal characteristics of an ideal operational amplifier. Also draw the circuit of a non-inverting amplifier.
(e) What is the range of the voltage-gain adjustment in the following circuit?

(f) Find the output voltage of the following circuit.

- o O o -

