(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID:9916 9906 9956

 Roll No. \square
B. Tech.

FIRST SEMESTER EXAMINATION, 2006-07
MATHEMATICS - I
Time : 3 Hours
Total Marks : 100

Note: (i) Attempt ALL questions.
(ii) All questions carry equal marks.
(iii) In case of numerical problems assume data wherever not provided.
(iv) Be precise in your answer.

1. Attempt any four parts of the following :
(a) If $y=x \log (1+x)$, prove that

$$
y_{n}=\left[(-1)^{n-2}\lfloor n-2(x+n)] /(1+x)^{n}\right.
$$

(b) If $x=$ tany, prove that

$$
\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0
$$

(c) If $u(x, y, z)=\log (\tan x+\tan y+\tan z)$
prove that $\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}=2$
[AS-104/MA-101/
(d) State and prove Euler's theorem for partial differentiation of a homogeneous function $f(x, y)$.
(e) If $u(x, y)=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}$ prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$
(f) Trace the curve $y^{2}(a-x)=x^{3} \quad a>0$
2. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) If $u^{3}+v^{3}=x+y, u^{2}+v^{2}=x^{3}+y^{3}$
show that $\frac{\partial(u, v)}{\partial(x, y)}=\frac{y^{2}-x^{2}}{2 u v(u-v)}$
(b) Find Taylor series expansion of function on $f(x, y)=e^{-x^{2}-y^{2}} \cos x y$ about the point $x_{0}=0, y_{0}=0$ up to three terms.
(c) Find the minimum distance from the point $(1,2,0)$ to the cone $z^{2}=x^{2}+y^{2}$.
3. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) Define the gradient, divergence and, curl.
(i) If $f(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find grad f at the point ($1,-2,-1$).
(ii) If $\overline{\mathrm{F}}(x, y, z)=x z^{3} \hat{i}-2 x^{2} y z \hat{j}+2 y z^{4} \hat{k}$ find divergence and curl of $\vec{F}(x, y, z)$.

TAS - 104/MA - 101/
MA $\mathbf{- 1 0 1 (O)}$
(c) Find the value of λ for which the vectors $(1,-2, \lambda),(2,-1,5)$ and $(3,-5,7 \lambda)$ are linearly dependent.
(d) Find the characteristic equation of the matrix
$\left(\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right)$.Also find the eigen values and eigen vectors of this matrix.
(e) Verify the Cayley Hamiltan theorem for the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)$. Also, find its inverse using this theorem.
(f) Diagonalize the matrix $\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

Note: Following question no. 5 is for New Syllabus only (TAS - 104/MA - 101(New)).
5. Attempt any two parts of the following :
($10 \times 2=20$)
(a) Evaluate by changing the variables,
$\iint_{R}(x+y)^{2} d x d y$ where R is the region bounded by the parallelogram $x+y=0, x+y=2$, $3 x-2 y=0$ and $3 x-2 y=3$.

TAS $-104 / \mathrm{MA}-101 /$
MA-101(O)
(b) Find the volume bounded by the elliptical paraboloids $z=x^{2}+9 y^{2}$ and $z=18-x^{2}-9 y^{2}$.
(c) Using Beta and Gamma functions, evaluate

$$
\int_{0}^{1}\left(\frac{x^{3}}{1-x^{3}}\right)^{1 / 2} d x
$$

Note : Following question no. 5 is for old syllabus only (MA - 101 (old)).
5. Attempt any two parts of the following :
(a) In a binomial distribution the sum and product of the mean and variance of the distribution are $25 / 3$ and $50 / 3$, respectively. Find the distribution.
(b) From the following data which shows the ages X and systolic blood pressure Y of 12 women, find out whether the two variables ages X and blood pressure Y are correlated ?

$$
\begin{array}{lrrrrrrrrrrrr}
\text { Ages }(X): & 56 & 42 & 72 & 36 & 63 & 47 & 55 & 49 & 38 & 42 & 68 & 60 \\
\text { B. P. }(Y): & 147 & 125 & 160 & 118 & 149 & 128 & 150 & 145 & 115 & 140 & 152 & 155
\end{array}
$$

(c) (i) If Θ is the acute angle between the two regression lines in case of two variables x and y, show that
$\tan \theta=\frac{1-r^{2}}{r} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}}$ where r,
σ_{x} and σ_{y} have their usual meanings. Explain the significance of the formula when $\mathrm{r}=0$ and $\mathrm{r}= \pm 1$.

TAS - 104/MA - 101/
MA-101(O)
(ii) Two variables x and y are correlated by the equation $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$. Show that the correlation between them is -1 if signs of a and b are alike and +1 , if they are different.

- o O o -
(b) State Gauss divergence theorem. Verify this theorem by evaluating the surface integral as a triple integral
$\int_{S} \int\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$ where S is the closed surface consisting of the cylinder $x^{2}+y^{2}=a^{2},(0 \leq z \leq b)$ and the circular discs $z=0$ and $z=b\left(x^{2}+y^{2} \leq a^{2}\right)$.
(c) State the Stokes' theorem. Verify this theorem for $\vec{F}(x, y, z)=x z \hat{i}-y \hat{j}+x^{2} y \hat{k}$ where the surface S is the surface of the region bounded by $x=0, y=0, z=0 \quad 2 x+y+2 z=8$ which is not included on $x z$-plane.

Attempt any four parts of the following:
(a) Find the rank of matrix

$$
\left[\begin{array}{cccc}
2 & 3 & -2 & 4 \\
3 & -2 & 1 & 2 \\
3 & 2 & 3 & 4 \\
-2 & 4 & 0 & 5
\end{array}\right]
$$

(b) Solve the system of equations

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+x_{3}=9 \\
& x_{1}+2 x_{2}+3 x_{3}=6 \\
& 3 x_{1}+x_{2}+2 x_{3}=8
\end{aligned}
$$

by Gaussian elimination method.

