

Printed Pages: 8

EEC-101

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 3301

Roll No.

B. Tech.

(Only for the candidates admitted/Readmitted in the session 2008-09)

(SEM. I) EXAMINATION, 2008-09 ELECTRONICS ENGINEERING

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions.

SECTION - A

- Attempt all the parts of this question. All parts of 2×10=20 the question carry equal marks. This question contains 10 objectives / Fill in the blank type / True False type questions:
 - (i) In Avalanche multiplication, pickup the correct answer:
 - (a) Disruption of covalent bond occur by collision
 - (b) Direct rupture of bonds
 - (c) (a) and (b) both
 - (d) None of the above

Pickup the correct answer:

- (ii) Which one of the following has the ability to act as an open circuit for dc and a short circuit for ac of high frequency?
 - (a) An inductor
 - (b) A capacitor
 - (c) A resistor
 - (d) None of the above.

33011

1

[Contd...

(iii) The alpha (α) and beta (β) of a transistor are related to each other as

(a)
$$\alpha = \frac{\beta}{\beta + 1}$$

(b) $\beta = \frac{\alpha}{1 + \alpha}$

(c)
$$\beta = \frac{1+\alpha}{\alpha}$$

(d)
$$\alpha = \frac{1+\beta}{\beta}$$

- Read the following statement (iv)
 - (a) I_{co} in a transistor consists of True/False majority carriers.
 - (b) Bias stabilization is used to prevent True/False thermal run away.
- An n type channel FET is superior to p type (v) channel FET because of electrons is greater than that of holes.
- Which one of the following has the highest input (vi) resistance?
 - (a) npn transistor in CB configuration
 - pnp transistor in CE configuration (b) (c) n type channel JFET
 - p type channel MOSFET (d)

3301]

For the circuit shown in Fig. 1, the output voltage $V_{\mathbf{0}}$ (vii) is given by: [Contd...

(a)
$$V_0 = -\frac{1}{RC} \int_0^t V_i(t) dt$$

(b)
$$V_0 = -RC \int_0^t V_i(t) dt$$

(c)
$$V_0 = -RC \frac{d}{dt} V_i(t)$$

(d)
$$V_0 = -\frac{1}{RC} \frac{d}{dt} V_i(t)$$

Fig. 1

(viii) The boolean expression

$$Y = AB + (A + B) (\overline{A} + B)$$
 may be simplified as

(a)
$$Y = A$$

(b)
$$Y = \overline{A}$$

(c)
$$Y = B$$

(de)
$$Y = \overline{B}$$

(ix) The time base of an oscilloscope is developed by

- (a) A sine wave voltage
- (b) A square wave voltage
- (c) A sawtooth voltage
- (d) The pulse from a built in clock.

- (x) "If we give negative potential to the upper vertical deflection plate with respect to the lower one of the CRT, the spot on the screen moves upward". The above statement is
 - True (b) False. (a)

SECTION - B

Attempt any three parts of the following. $10 \times 3 = 30$ Note:

- Sketch typical forward and reverse characteristics (a) (i) for a germanium diode and for a silicon diode. Compare the characteristics and explain why the reverse saturation current in a silicon diode is much smaller than that in a comparable germanium diode.
 - Determine V_0 , I_1 , I_{D_1} and I_{D_2} (ii) parallel diode configuration of Fig. 2.

Fig. 2

- (i) Explain why in the active operation, the base current I_B is much smaller than I_C or I_E . What is the relation among the three currents?
 - Define α and β with respect to BJT and derive (ii) the relationship between them.

- (c) (i) How is an FET used as a voltage variable resistor? Explain.
 - (ii) What are the characteristics of an ideal operational amplifier? Explain an inverting amplifier.
- (d) State and prove De Morgan's theorem. How is (i) it helpful in minimizing a given Boolean expressions?
 - (ii) What is Karnaugh map? Explain how it helps in simplifying a given Boolean expression. Draw Karnaugh map for three number of variables. Also show alternative schemes for drawing a Karnaugh map for three variables, when diagonal mapping is done in K maps.
- Sketch a Cathode Ray Tube used in a CRO. What are its main parts? Give the functions of each part. How is current measured by CRO?

SECTION - C

Note: Attempt all the questions. All questions $10 \times 5 = 50$ carry equal marks.

- 3 Attempt any two parts of the following:
 - (a) Discuss the different types of junction break down that can occur in a reverse biased diode. Explain the shape of the break down diode charcteristics. What will be their thermal coefficient?
 - Draw circuit diagrams to show two methods of producing (b) a negative output votlage from a half wave rectifier. Explain briefly the circuit operations.
 - What is clipper circuit? Sketch the output votlage wave (c) form for the circuit shown in Fig. 3.

- 4 Attempt any one part of the following:
 - (a) Sketch a votlage divider bias circuit using an npn transistor. Show all voltage polarities and current directions. Explain the operation of the circuit and write the approximate equations for V_B , I_E , I_C and

 V_{CE}

(b) For a CE amplifier circuit with h-parameters

$$h_{ie} = 2 k\Omega$$
, $h_{re} = 6 \times 10^{-4}$
 $h_{fe} = 50$, $h_{oe} = 25 \mu A/V$ and

Load resisitance $R_L = 4 k\Omega$,

Source resistance $R_s = 10 \ k \ \Omega$.

Compute $A_v,\ A_L,\ R_i$ and R_o .

- 5 Attempt any one part of the following: $10 \times 1 = 10$
 - (a) Sketch the structure of a p type channel depletion type MOSFET and explain its principle of operation with neat diagrams. Also sketch its V-I characteristics and circuit symbols for it.

- (b) (i) Define and explain the terms common mode rejection ratio and virtual ground in an OP-amp. Why integrators are preferred over differentiators.
 - (ii) Find the output voltage of the following op-amp. Circuit shown in **Fig. 4**.

- 6 Attempt any two parts of the following:
 - (a) (i) Add and subtract with converting the following two hexadecimal numbers A4FB and 3FDC
 - (ii) Convert the following numbers as indicated
 - (I) $(6089.25)_{10} = (___)_8$
 - (II) $(A6BF.5)_{16} = (\underline{})_2$
 - (III) $(25.26)_8 = (____)_2$
 - (b) (i) What is/are Universal gate(s) implement two input XOR gate using only 4 NAND gates.
 - (ii) Express the Boolean function $F = AB + AC + A\bar{D}$ in a sum of minterms form.
 - (c) Minimize the given Boolean function using K-map and implement the simplified function using NOR gates only

$$F(w, x, y, z) = \sum_{n=0}^{\infty} m(0, 1, 2, 9, 11, 15) + d(8, 10, 14)$$
3301]

- Attempt any one part of the following: $10 \times 1 = 10$
 - (a) Explain briefly the working principle of a digital multimeter with the aid of a block diagram. What are the characteristics of Digital Voltmeter used in a typical digital multimeter?
 - (b) State the main applications of a CRO. Briefly explain each of them. Explain how you will quickly measure the frequency of waveform displayed on the CRO.