

Printed Pages: 7

EAS-102

(Following Paper ID and	Roll No. to	be	filled	in your	Answer	Book)	
APER ID: 9603	Roll No	F					

B. Tech.

(Only for the candidates admitted/Readmitted in the session 2008-09)

(SEM. I) EXAMINATION, 2008-09 ENGG. CHEMISTRY - I

Time: 3 Hours]

[Total Marks : 100

Cho	ose / Fill correct answer : 20×1=20
(i)	The bond energy of N_2 is than that of O_2 .
(ii)	Which of the following possesses lowest energy?
	(i) NO (ii) O ₂ (iii) N ₂ (iv) CO
(iii)	Which of the following results in strongest bonding?
	(i) Electrovalent (ii) Co-ordinate
	(iii) Covalent (iv) H-bond.
(iv)	Which of the following molecules possesses the smallest bond length?
	(i) F_2 (ii) Cl_2
	(iii) Br ₂ (iv) I ₂
(v)	Rate of reaction is directly proportional to the
	i njegovi ja i sajeći en sčak a Glikonji, i ji st
(vi)	The reaction: $N_2O_5(g) \to N_2O_4(g) + \frac{1}{2}O_2(g)$ is

vi) The reaction: $N_2O_5(g) \rightarrow N_2O_4(g) + \frac{1}{2}O_2(g)$ is

- (i) Zero order (ii) First order
- (iii) Second order (iv) Fractional order.

(vii) Threshold energy = Activation energy + (viii) Bragg's equation is (ix) Chlorination of benzene is carried out in the presence of (i) $AgNO_3$ (iii) Ketoxime H_2SO_4 N-substituted amide. This (x) reaction is known as Aldol condensation (i) (ii)Beckmann rearrangement (iii) Hoffmann rearrangement (iv) Diels - Alder reaction. Cyclohexanone oxime H_2SO_4 (xi) (xii) Which of the following compounds shows optical isomerism? $CH_3 - CH(OH) - COOH$ (i) $CH_3 - CHBr - CH_3$ (ii) (iii) $CH_3 - CH(CH_3) - CH_2CH_3$ (iv) $CH_3 - CH(OH) - CH_3$. (xiii) The degree of polymerization represents the The polymerization which is accompanied by (xiv) elimination of small molecules is called: Addition (i) Copolymerization (ii)Condensation (iii)Crosslinking polymerization. (iv) 96031 [Contd..

(xv)	Poly of _	styrene is prepared from styrene in presence				
(xvi)	[Pt]	$Cl_3(C_2H_4)$ $^-K^+$ is known as				
(xvii)	In neutralization titration of $\mathit{Na}_2\mathit{CO}_3$ Vs HCI , the					
	indicator used is:					
	(i)	Methyl yellow				
	(ii)	Methyl red				
	(iii)	Methyl orange				
	(iv)	Erio-Chrome black T				
(xviii)	The absorbance is directly proportional to:					
	(i)	Wavelength				
	(ii)	Path length				
	(iii)	Concentration				
	(iv)	Concentration and path length both.				
(xix)	IR a	ctive molecules are those which undergo a				
	net c	change in				
(xx)	Nun	nber of NMR signals obtained in				
	CH_3	COCH ₃ will be				
	(i)	2				
	(ii)	6				
	(iii)					
	(iv)					
	Ž					

SECTION - B

Attempt any three of the following: $10 \times 3 = 30$

(i) (a) What is molecular orbital theory? With the help of molecular orbital diagram, calculate the bond order of the following:

 He^{2+} , NO, N_2 and N_2^-

- (b) An edge of cubic cell of NaCl crystal is 6.5×10⁻⁸ cm. Assuming that four molecules of NaCl are associated per unit cell, calculate its density.
- Given: Avogadro's number = 6.023 × 10²³.

(ii) (a) Distinguish between order and molecularity of a reaction, calculate order and molecularity of the following reactions:

$$N_2O_5\left(g
ight) o N_2O_4\left(g
ight) + rac{1}{2} \; O_2,$$

$$CH_3COOC_2H_5 + H_2O \text{ (excess)} \xrightarrow{H^+} CH_3COOH + C_2H_5OH$$

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$
, and $CH_3CHO \xrightarrow{\Delta} CH_4 + CO$

- (b) What is activation energy? Discuss its relationship with rate constant of a reaction.
- (iii) What are the properties of a good fuel? Define, High and Low Calorific Values. A 0.80 g sample of a solid fuel was completely combusted in the excess of oxygen using bomb calorimeter. The rise in temperature of water in calorimeter was 2.5°C. Calculate the High Calorific Value of the fuel, if water taken in calorimeter is 2000 g and water equivalent of calorimeter is 2200 g. Also calculate Low Calorific Value.

(Given: % H in fuel = 2.2).

- (iv) Give the mechanism of the following reactions:
 - (a) Beckmann rearrangement
 - (b) Diels-Alder reaction.
- (v) Distinguish between homopolymers and copolymers. Why do polymers have an average molecular weight?

SECTION - C

 $10 \times 5 = 50$

- 3 Attempt any one part of the following:
 - (a) What do you understand by liquid crystalline state? Discuss the classification of liquid crystals and write their applications.
 - (b) Discuss properties and applications of fullerene.
- 4 Attempt any one part of the following:
 - (a) What do you mean by EMF? Discuss chemical and concentration cells.
 - (b) Derive an equation for half life period of a first order reaction.

A compound decomposes according to the first order rate law with a half life period of 30 min. Calculate the fraction of remaining compound after 120 min.

- 5 Attempt any one part of the following:
 - (a) Complete the following reactions and write their mechanism:

(ii)
$$C_6H_5CHO + KOH \rightarrow$$

(iii)

$$\begin{array}{c|c}
O \\
C \\
C \\
C \\
O
\end{array}$$

$$\begin{array}{c}
A \\
\hline
A \\
\hline
NAOH
\end{array}$$

$$\begin{array}{c}
Br_2 \\
\hline
NAOH
\end{array}$$

$$\begin{array}{c}
Br_2 \\
\hline
NH_2
\end{array}$$

(b) (i) What do you understand by E-Z notations?
Assign E and Z configuration to the following compounds:

(ii) Discuss the conformations of n-butane with the help of its potential energy diagram.

- Attempt any one part of the following: 6
 - An organic compound having molecular (a) (i) formula C_7H_6O shows absorption peaks at 3010, 2700, 1600, 1580, 1520, 1480 and 1720 cm⁻¹ in its IR spectrum. Suggest its structure.
 - Define chemical shift. Show the expected (ii) NMR signals and their splitting in the following compounds:

$$CH_3 - CH_2 - CH_2 - OH$$
 and $C_6H_5CH_3$.

OR

- What is Beer-Lambert law in UV-VIS absorption (a) spectroscopy? A compound having concentration 10^{-3} g/l resulted absorbance value 0.20 at λ_{max} 510 nm using 1.0 cm cell. Calculate its absorptivity and molar absorptivity values. Molecular weight of compound is 400.
- Discuss the ion exchange method for water (b) softening. Compare its merits with Zeolite method.
- 7 Attempt any one part of the following:
 - Discuss the thermoplastic resins. Write the synthesis (a) and applications of polystyrene and polyvinyl chloride.
 - What are the organometallic compounds? Give (b) the preparation and properties of organometallic compounds of lithium.

7