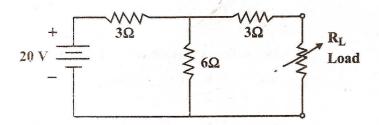


(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 ELECTRICAL ENGINEERING


Time : 3 Hours]

ANT BALL

[Total Marks: 100

SECTION - A

- 1Attempt all parts of the following :10×2=20(Fill in the blanks/choose/match)
 - (i) The maximum power that can be supplied to the load in the following circuit is

(a) 10 W

(b) 20 W

(c) = 30 W

(d) 40 W

[].]-2301]

1

- (ii) The coupling between two magnetically coupled coils is said to be the ideal if the coefficient of coupling is
 - (a) Zero
 - (b) 0.5⁻
 - (c) 0.75
 - (d) 1
- (iii) A sinusoidal current having rms value of 8 ∠0° A is added to another sinusoidal current of rms value 6 ∠ 90°A. The rms value of the resultant current is
 - (iv) Which of the following conditions is common to both series and parallel resonance?
 - (a) curent is maximum
 - (b) power is low
 - (c) impedance is minimum
 - (d) power factor is unity
 - (v) Which of the following formulae is used to express active power in a balanced three-phase circuit?
 - (a) $V_L I_L \cos \phi$
 - (b) $\sqrt{3} V_L I_L \cos \phi$
 - (c) Vph Iph $\cos \phi$
 - (d) $\sqrt{3}$ Vph Iph cos ϕ

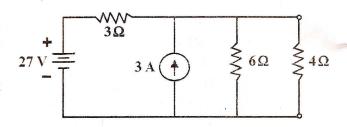
JJ-2301] 2

- (vi) A moving coil instrument gives full scale deflection with 20 mA. The resistance of coil is 4 ohm. The value of series resistance needed for the instrument to read upto 30 V is
- (vii) A 100 kVA single phase transformer operating at 0.9 power factor has 90% maximum efficiency. The iron loss will be
- (viii) A 4-pole lap wound dc generator generates 200 V at 1000 rpm. If this generator is now wave wound and runs at 500 rpm, the generated voltage will be
- (ix) A 3-phase induction motor connected from a 3-phase, 50 Hz ac supply runs at 720 rpm and has 4% slip. The number of poles in the motor are :
 - (a) 4
 - (b) 6
 - (c) 8
 - (d) 16
- (\mathbf{x}) Match the following (marks will be awarded if all matching are correct) :

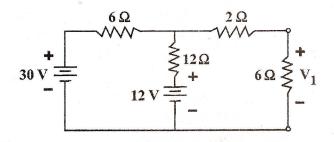
Type of Motor

- (i) dc series motor
- (ii) Synchronous motor
- (iii) 3-phase squirrel cage (c) Hair dryer induction motor
- (iv) Single phase shaded pole motor

- Application
- Centrifugal pumps (a)
- (b) Cranes


 - (d) Condenser
- JJ-23011 3

[Contd...*


in the second

SECTION - B

Attempt any three parts of the following : 10×3=30
(a) (i) Determine current in 4 ohm resistance using Thevenin's theorem in the following circuit :

 (ii) Find voltage V₁ across 6 ohm resistance in the following circuit using loop analysis method :

(b) A coil having a resistance of 6 ohm and an inductance of 0.0255 H is connected across a 230 V, 50 Hz ac supply. Calculate

(i) current

(ii) power factor

- (iii) active power
- JJ-2301] 4

[Contd...

in the second

- (iv) reactive power
- (v) apparent power
- (vi) It is desired to improve power factor to 0.8. What value of capacitance to be connected in series R and what is reduction in reactive power?
- (c) A balanced star connected iductive load is connected to a 400 V, 50 Hz ac supply. Two wattmeters used to measure supply power indicate 8000 W and 4000 W respectively. Determine (i) line current

 - (ii) impedance of each phase
- (iii) resistance and inductance of each phase.
- A 20 kVA, 2000 V/200 V, single phase 50 Hz (d)transformer has a primary resistance of 1.5 ohm and a reactance of 2 ohm. The secondary resistance and reactance are 0.015 ohm and 0.02 ohm respectively. The no load current of transformer is 1 A at 0.2 power factor. Determine
 - (i) equivalent resistance, reactance and impedance referred to primary
 - (ii) supply current
 - (iii) total copper loss.

Draw approximate equivalent circuit.

A dc shunt generator delivers 50 kW at 250 V (e) when running at 500 r.p.m. The armature and field resistances are 0.05 ohm and 125 ohm respectively. Calculate the speed of the same machine and developed torque when running as a shunt motor and taking 50 kW at 250 V. Allow 1 volt per brush for contact drop.

5

-23011

SECTION - C

Note : Attempt all questions of this section. $10 \times 5 = 50$

- 3 Attempt any two parts of the following :
 - (a) State and explain superposition theorem.
 - (b) Discuss different types of voltage and current sources.
 - (c) Explain star-delta transformation.
- 4 Attempt any two parts of the following :
 - (a) Explain parallel resonance and draw graphs of α , β and γ against frequency.
 - (b) What is meant by power factor? What is its significance? How will you obtain power factor from kVA triangle?
 - (c) For two phasors $A = a_1 + jb_1$ and $B = a_2 jb_2$, obtain their multiplication and division using polar form of representation.
- 5 Explain construction and working principle of a single phase induction type energy meter. How is energy measured?

OR

What is a three phase system? Give its necessity and advantages. What is meaning of phase sequence and how can it be changed?

JJ-2301] 6

6 Attempt any two parts of the following :

- (a) Draw and explain hysteresis loop. What is its significance?
- (b) Explain single phase autotransformer and give its application.
- (c) Derive e.m.f. equation of a single phase transformer and obtain relation for secondary to primary winding voltages.

Attempt any two parts of the following :

7

(a) Derive an equation for generated torque in dc motor.

- (b) Draw slip-torque characteristics of a three phase induction motor and explain its various regions of operation.
- (c) Explain principle of operation of a synchronous motor and give its applications.