Printed Pages : 4 TEE101
(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID: 2018 Roll No.
B.Tech
(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 ELECTRICAL ENGINEERING
Time : 3 Hours] [Total Marks : 100
Note : (i) Attempt all questions.
(ii) All questions carry equal marks.
(iti). In case of numerical problems assume data wherever not provided.
(iv) Graph paper is required.
Attempt any four parts of the following : 5×4=20
(a) Find the average and RMS values of a sinusoidal current.
 (b) An iron choke coil draws 5 A when connected to 40 V dc supply and draws 8 A when connected to 80 V, 50 Hz ac supply. Calculate :
(i) The resistance and inductance of the coil
(ii) The power drawn
(iii) Power factor.
(c) Calculate total current and equivalent impedance for the circuit given in Fig. 1.1
JJ-2018]

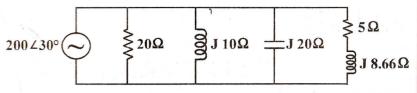
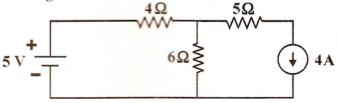
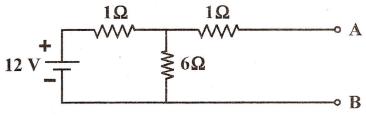



Fig. 1.1

- (d) Explain series resonance in R-L-C circuit. Explain band-width and quality factor.
- (e) An iron ring having a mean diameter of 25 cm and cross section area 2 cm² is uniformly wound with 400 turns and carries a current of 5 A. The permeability of iron is 450. Calculate (i) mmf (ii) reluctance (iii) flux (iv) flux density
- (f) Give analogy between electric and magnetic circuits.

Attempt any four parts of the following : 5×4=20

(a) State superposition theorem. Determine the current through 6Ω resistor using superposition theorem in Fig. 2.1.



- (b) Explain nodal analysis and illustrate the application with reference to an electric circuit. State Thevenin's theorem.
- (c) Determine Thevenin's equivalent circuit of the given network Fig. 2.2.

[J-2018]

2

[Contd...

Fig. 2.2

- (d) Define and explain maximum power transfer theorem.
- (e) A moving coil ammeter has a resistance of 0.01 Ω and full scale deflection current of 0.25 A. How this meter can be made to read (i) Voltage upto 250 V (ii) Current upto 20 A ?

(f)

Explain the working principle of energy meter with a neat diagram.

3 Attempt any two parts of the following : $10 \times 2 = 20$

(a) Prove for a delta connected system $I_L = \sqrt{3} I_{Ph}$ and

 $V_L = V_{Ph}$. Each phase of a delta connected load has a resistance of 25 Ω , an inductance of 0.15 H and a capacitance of 120 μF . The load is connected across a 400 V, 50 Hz, 3-phase supply. Determine the (i) line current (ii) active power and (iii) reactive power.

- (b) Explain the principle of operation of a transformer. Differentiate between shell type and core type of transformers. Draw labelled equivalent circuit of a single phase transformer.
- (c) Explain short circuit test and open circuit test performed on single phase transformer.
- JJ-2018] 3

[Contd...

Attempt any two parts of the following : $10 \times 2=20$

(a) What are the conditions of voltage build up in dc shunt generator ? The magnetisation characteristic of a d.c. shunt generator at 800 rpm is given as :

$I_f(amp)$	0	0.2	0.40	0.65	1.02	1.75	3.15	5.00
$E_0(Volt)$	10	40	80	120	160	200	240	260

Determine :

4

- (a) Critical field resistance
- (b) No load voltage
- (b) Describe armature resistance and field flux method of speed control for d.c. motors. A 400 V d.c. shunt motor takes 5 A at no load. Given $R_a = 0.5 \Omega$ and $R_f = 200 \Omega$. Calculate the efficiency when motor takes 40 A on full load.
- (c) Differentiate between salient pole and cylindrical rotor alternator. Give the advantages of rotating field over stationary armature winding. Explain V-curve and give the applications of synchronous motor.

5 Attempt any **two** parts of the following :

- Explain the principle of operation of 3 phase induction motor. Draw torque-slip characteristics and explain various operating regions.
- (b) What are different starters used in 3 phase induction motors ? Describe any one of them.
- (c) Why single phase induction motor is not self starting ? Explain any one method to start it.

 $10 \times 2 = 20$