

Printed Pages: 3

TEC101

(Following Paper ID	and Roll No.	to be	efilled	in you	r Answe	er Book)	
PAPER ID: 3033	Roll No.						

B. Tech

(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 ELECTRONICS ENGINEERING

Time: 3 Hours]

A TOP OF

[Total Marks: 100

Note: Attempt all the questions.

- 1 Attempt any two parts of the following: 10×2=20
 - (a) With a neat energy band diagram, explain the working of a p-n junction diode in reverse bias.
 - (b) Draw the forward characteristics of a p-n junction diode and explain its:
 - (i) static resistance
 - (ii) dynamic resistance and
 - (iii) average a.c. resistance.
 - (c) Name the capacitances associated with a p-n junction diode and explain the causes and dependence of these capacitances.

(a) Explain the working of following circuit:

- (b) Draw the circuit of a full wave rectifier. Derive the expression for its ripple factor.
- (c) Draw the output waveform of a full wave rectifier and compare its performance with (i) C filter (ii) LC filter.
- 3 Attempt any two parts of the following: 10×2=20
 - (a) Draw the BJT circuits for CB, CC and CE configurations. Compare Z_i , Z_o , A_V and A_I for the above configurations.
 - (b) Draw the circuit of a BJT in CE configuration employing voltage divider biasing. Calculate its stability against I_{CO} .
 - (c) Using a low frequency hybrid model, calculate A_{I} and A_{I} of a 2 stage RC coupled BJT amplifier.

- (a) With a neat sketch, explain the working of an n-channel JFET.
- (b) With a neat sketch, explain the working of a p-channel depletion mode MOSFET.
- (c) Draw the circuit of a JFET amplifier in all the three configurations. Compare A_V , A_I , Z_i , Z_o for all of them.

Attempt any two parts of the following: 10×2=20

(a) (i) Convert

A STATE OF THE STA

- FE ϕ A_{hex} into Decimal 7650 octal into hex 11010110 binary into octal.
- (ii) Draw the circuit of a 2 input EX-OR gate using four 2 input NAND gates.
- (b) Minimise the following K-Map:

AB	00	01	11	10
00			1	
01	1	1	1	
11		1	1	1
10		1		

(c) Draw an op-amp based circuit to give $V_0 = V_1 + V_2 + V_3$.