(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 3033

B.Tech
 (SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 ELECTRONICS ENGINEERING

Time : 3 Hours]
[Total Marks: 100
Note : Attempt all the questions.

1 Attempt any two parts of the following : $10 \times 2=20$
(a) With a neat energy band diagram, explain the working of a p-n junction diode in reverse bias.
(b) Draw the forward characteristics of a p-n junction diode and explain its
(i) static resistance
(ii) dynamic resistance and (iii) average a.c. resistance.
(c) Name the capacitances associated with a p-n junction diode and explain the causes and dependence of these capacitances.
(a) Explain the working of following circuit :

(b) Draw the circuit of a full wave rectifier. Derive the expression for its ripple factor.
(c) Draw the output waveform of a full wave rectifier and compare its performance with (i). C filter (ii) LC filter.

3 Attempt any two parts of the following : $\quad \mathbf{1 0} \times \mathbf{2}=\mathbf{2 0}$
(a) Draw the BJT circuits for CB, CC and CE configurations. Compare Z_{i}, Z_{o}, A_{V} and A_{I} for the above configurations.
(b) Draw the circuit of a BJT in CE configuration employing voltage divider biasing. Calculate its stability against $I_{C O}$.
(c) Using a low frequency hybrid model, calculate A_{y} and A_{I} of a 2 stage RC coupled BJT amplifier.

Attempt any two parts of the following :
$10 \times 2=20$
(a) With a neat sketch, explain the working of an n-channel JFET.
(b) With a neat sketch, explain the working of a p-channel depletion mode MOSFET.
(c) Draw the circuit of a JFET amplifier in all the three configurations. Compare $A_{V}, A_{I}, Z_{i}, Z_{o}$ for all of them.

Attempt any two parts of the following : $10 \times 2=20$
(a) (i) Convert

为
FE $\phi A_{\text {hex }}$ into Decimal 7650 octal into hex 11010110 binary into octal.
(ii) Draw the circuit of a 2 input EX-OR gate using four 2 input NAND gates.
(b) Minimise the following K-Map :

(c) Draw an op-amp based circuit to give $V_{0}=V_{1}+V_{2}+V_{3}$.

