Printed Pages : 8
EAS103
(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPERDD 9601

Roll No.

B.Tech

(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 MATHEMATICS-I

Time: 3 Hours]
[Total Marks : 100

SECTION - A

All parts of this question are compulsory.

1 (a) If $f(x)=f(0)+k f_{1}(0)+\frac{k^{2}}{L^{2} .} f_{2}(\theta k), 0<\theta<1$ then the value of θ when $k=1$ and $f(x)=(1-x)^{5 / 2}$ is given as \qquad .
(b) The shortest distance from the point (1, 2, -1) to the sphere $x^{2}+y^{2}+z^{2}=24$ shall be
\qquad .
(c) The Jacobian $J\left(\frac{u, v}{x, y}\right)$ for $u=e^{x} \sin y$, $v=x \log \sin y$ shall be \qquad .
(d) For the curve $a y^{2}=x^{2}(a-x)$, which of the following statement(s) is/are Incorrect ?
(i) Curve passes through origin
(ii) Curve is symmetrical about y axis
(iii) Curve has two branches
(iv) Curve has no tangents at origin.
(e) If P and Q are non-singular matrices, then for Matrix 'M', which of the following statements are correct ?
(i) Rank $(P M Q)>$ Rank M
(ii) Rank $(P M Q)=\operatorname{Rank} M$
(iii) Rank $(P M Q)<\operatorname{Rank} M$
(iv) Rank $(P M Q)=\operatorname{Rank} M+\operatorname{Rank}(P Q)$
(f) If λ is an eigen value of the matrix ' M ' then for the matrix ($M-\lambda I$), which of the following statement(s) is/are correct ?
(i) Skew symmetric
(ii) Non singular
(iii) Singular
(iv) None of these.

Indicate True / False for the following statements :
(g) For $\int_{0}^{\infty} \int_{x}^{\infty} f(x y) d x d y$, the change of order of
integration is

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} f(x y) d x d y \quad \text { True / False } \tag{i}
\end{equation*}
$$

(ii) $\int_{x}^{\infty} \int_{0}^{\infty} f(x y) d x d y \quad$ True / False
(iii) $\int_{0}^{\infty} \int_{0}^{y} f(x y) d x d y \quad$ True / False x
(iv) $\int_{0}^{\infty} \int_{0}^{x} f(x y) d x d y \quad$ True / False
(h) The value of $\sqrt{-\frac{1}{2}}$ is given by
(i) $\sqrt{\pi} \quad$ True $/$ False
(ii) $2 \sqrt{\pi} \quad$ True / False
(iii) $-\sqrt{\pi} \quad$ True / False
(iv) $-\mathbf{2} \sqrt{\pi} \quad$ True / False

Pick up the correct option from the following :
(b) If \vec{F} is the velocity of a fluid particle then $\int_{C} \vec{F} \cdot d \vec{r}$
represents
(i) Work done
(ii) Circulation
(iii) Flux
(iv) Conservative field.
(j) The value of $\iint_{S} \vec{F} \cdot \vec{n} d \bar{s}$ where
$\vec{F}=a x \hat{i}+b y \hat{j}+c z \hat{k} ; a, b, c$ being constants is given by
(i) $\frac{\pi}{3}(a+b+c)$
(ii) $\frac{4 \pi}{3}(a+b+c)$
(iii) $2 \pi(a+b+c)$
(iv) $\pi(a+b+c)$.

SECTION - B

Attempt any three parts of the following :

2 (a) Determine the values of ' \boldsymbol{a} ' and ' \boldsymbol{b} ' for which the following system of equations has
$3 x+\boldsymbol{5} y-\boldsymbol{a z}=\mathbf{7}$,
$x-b y+4 z=-3$,
$a x+4 y-\mathbf{5} \boldsymbol{z}=4$
(i) No solution
(ii) A unique solution
(iii) Infinite no. of solutions.
(b) Find the value of $D^{n}\left\{x^{n-1} \log x\right\}, D^{n} \equiv \frac{d^{n}}{d x^{n}}$.
(c) If $u=\frac{(x+y)}{z}, v=\frac{(y+z)}{x}, w=\frac{y(x+y+z)}{(x z)}$
then show that u, v, w are not independent and find the relation between them.
(d) A rigid body is rotating with constant angular velocity w about a fixed axis. If ' v ' is the linear velocity of any point of the body then prove that curl $\boldsymbol{v}=\mathbf{2 w}$.
(e) Assuming $\sqrt{n} \sqrt{1-n}=\pi \operatorname{cosec} n \pi, 0<n<1$, show

$$
\text { that } \int_{0}^{\infty} \frac{x^{p-1}}{1+x} d x=\left(\frac{\pi}{\sin p \pi}\right) ; 0<p<1
$$

SECTION - C

All questions of this section are compulsory. Attempt $\quad 10 \times 5=50$ any two parts from each question :

3 (a) If $x=\sin \left(\frac{\log y}{a}\right)$ then evaluate the value
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$ with usual symbols.
(b) If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+\frac{1}{2} \cot u=0 .
$$

(c) Verify Euler's theorem for $z=\frac{x^{1 / 3}+y^{1 / 3}}{x^{1 / 2}+y^{1 / 2}}$.

4 (a) In a plane $\triangle A B C$, find the maximum value of $\cos A \cos B \cos C$.
(b) If $x=e^{v} \sec u, y=e^{v} \tan u$ then evaluate $\frac{\partial(x, y)}{\partial(u, v)}$.
(c) The power ' P ' required to propel a steamer of length ' l ' at a speed ' u ' is given by $P=\lambda u^{3} l^{3}$ where λ is constant. If u is increased by 3% and l is decreased by 1%, find the corresponding increase in ' P '

5 (a) Show that row vectors of the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right] \text { are linearly independent. }
$$

JJ-9601] |||||||||||||||||||||||||||||| 6
(b) Find the rank of the following matrix using the
elementary transformations $\left[\begin{array}{cccc}1 & -3 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 3 & 4 & 1 & -2\end{array}\right]$.
(c) Express the matrix $A\left[\begin{array}{ccc}i & 2-3 i & 4+5 i \\ 6+i & 0 & 4-5 i \\ -i & 2-i & 2+i\end{array}\right]$
as a sum of Hermitian and Skew Hermitian matrix.
(a) Interpret the physical meaning of curl $\overrightarrow{\boldsymbol{F}}$ and $\operatorname{div} \overrightarrow{\boldsymbol{F}}$.
(b) Verify the divergence theorem for the function
$\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$; taken over the cube bounded by planes $x=0, x=1$;

$$
y=0, y=1 ; z=0, z=1 .
$$

(c) If a vector field is given by
$\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$. Is this field irrotational ? If so, find its scalar potential.
(a) Evaluate $\iint_{R}\left(1-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right) d x d y$ over the first
$3=\frac{-1}{6}$ quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Find the mass of the region bounded by ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$; if the density varies as the square of the distance from the centre.
(c) A triangular prism is formed by the planes whose equations are $\boldsymbol{a} \boldsymbol{y}=\boldsymbol{b} \boldsymbol{x}, \boldsymbol{y}=\mathbf{0}$ and $\boldsymbol{x}=\boldsymbol{a}$. Find the volume of this prism between the plane $\boldsymbol{z}=\mathbf{0}$ and the surface $\boldsymbol{z}=c+\boldsymbol{x} \boldsymbol{y}$.

