(Following Paper ID and Roll No, to be filled in your Answer Book)

B. Tech

(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 MATHEMATICS I

Time: 3 Hours]
[Total Marks: 100

Note : Attempt all questions.
1 Attempt any two parts of the following :
(a) Reduce the matrix :

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
-1 & 1 & -3 & -3 \\
1 & 0 & 1 & 2 \\
1 & -1 & 3 & 3
\end{array}\right]
$$

to column echelon form and find its rank.
(b) Verify the Cayley-Hamilton theorem for the matrix :

$$
A=\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 5 & 4 \\
-4 & 4 & 3
\end{array}\right]
$$

and hence find A^{-1}.
(c) Find the eigenvalues and the corresponding eigen vectors of the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]
$$

2 Attempt any two parts of the following :
(a) , If $y=\left(x^{2}-1\right)^{n}$, prove that

$$
\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0
$$

(b) If $u=x^{3}+y^{3}+z^{3}+3 x y z$, show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=3 u
$$

(c) If $u=f(r)$ where $r^{2}=x^{2}+y^{2}$, prove that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)
$$

3 Attempt any two parts of the following :
(a) If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$,

$$
z=r \cos \theta \text {, show that }
$$

$\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta$
(b) Determine the points where the function
$f(x, y)=x^{3}+y^{3}-3 x y$
has a maximum or minimum.
(c) A rectangular box open at the top is to have a given capacity. Find the dimensions of the box requiring least material for its construction.

4 Attempt any two parts of the following :
(a) Evaluate
$\iint_{A} x y d x x y$
where A is the domain bounded by x-axis, ordinate $x=2 a$ and the curve $x^{2}=4 a y$.
(b) Find the volume bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$.
(c) Evaluate

$$
\begin{array}{r}
\iiint_{R}(x+y+z) d x d y d z \text {, where } \\
R: 0 \leq x \leq 1,1 \leq y \leq 2,2 \leq z \leq 3
\end{array}
$$

5 Attempt any two parts of the following :
(a) Find a unit normal vector n of the cone of revolution $z^{2}=4\left(x^{2}+y^{2}\right)$ at the point $P:(1,0,2)$.
(b) Using Green's theorem evaluate

$$
\int_{C}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y
$$

where C is the square formed by the lines $y= \pm 1, x= \pm 1$
(c) Verify Stoke's theorem for
$\vec{F}=x y^{2} \hat{i}+y \hat{j}+z^{2} x \hat{k}$ for the surface of a rectangular lamina bounded by

$$
x=0, y=0, x=1, y=2, z=0
$$

