•	
Printed Page	s: 4 TAS101
(Following Paper ID and Roll No. to be filled in your Answer Book)	
PAPER ID : 9913 Roll No.	
B.Tech	
(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10	
PHYSICS	
Time: 3 I	Hours] [Total Marks: 100
Note :	(1) Attempt all questions.
and the second second second	(2) All questions carry equal marks.
1. 10. 10.	 (2) All questions carry equal marks. (3) Standard data are given in the end of the
	question paper.
1 Do a	any four of the following : $5 \times 4 = 20$
(a)	Discuss briefly Michelson-Morley experiment and
1.	mention its outcome.
(b)	Deduce an expression for time dialation on the
	basis of Lorentz transformation equations.
(c)	Obtain the volume of a cube, the proper length
	of each edge of which is L _o , when it is moving
	with velocity v along one of its edges.
(d)	How fast an electron must move in order that
	its mass equal to the rest mass of the proton ?
(e)	Show that the relativistic form of Newton's
	second law when \vec{F} is parallel to \vec{v} is
	3
	$\overline{\mathbf{v}}_{} dv _{1} v^{2} _{2}$
	$\vec{F} = m_o \frac{dv}{dt} \left[1 - \frac{v^2}{c^2} \right]^{-\frac{5}{2}}.$
(f)	
	rest mass energy, find its velocity.

JJ-9913]

Tank

[Contd...

Do any four of the following :

2

- (a) What do you understand by coherent sources? How are these obtained is practice ? Give examples.
- (b) Explain that in biprism expt. the central fringe is achromatic when white light is used.
- (c) Light of wavelength 6000 Å is incident normally on a wedge shaped film ($\mu = 1.35$). The fringes are formed to be 2.0 mm apart from each other. Calculate the angle of wedge.
- (d) What is meant by diffraction of light ? Distinguish between Fresnel and Fraunhofer class of diffraction giving examples.
- (e) Calculate the angle between the central image of a lamp filament and its first diffracted image produced by a fabric with 160 threads per cm $(\lambda = 6000 \overset{o}{A})$
- (f) Obtain the design of a plane transmission diffraction grating capable of resolving a wavelength difference of $_{0}^{0}A$ at a mean wavelength of $_{0}^{0}A$ in second order spectra.
- 3 Do any two of the following : 10×2=20
 (a) What do you understand by double refraction ? Explain Huygens theory of double refraction in an uniaxial crystal.

2

JJ-9913]

[Contd...

- (b) (i) Calculate the thickness of a doubly refracting crystal plate required to introduce a path difference of $\frac{\lambda}{2}$ between the ordinary and extraordinary rays when $\lambda = 6000 \stackrel{\circ}{A}$. $\mu_0 = 1.55$ and $\mu_e = 1.54$.
 - (ii) The specific rotation of quartz at 5086 A
 is 29.73 deg/mm. Calculate the difference in the refractive indices.
- (c) What are the requirements for producing laser action ? How are they achieved ?

Do any two of the following :

 $10 \times 2 = 20$

[Contd...

- (a) Explain the concept of Maxwell's displacement current and show how it led to the modification of the Ampere's law.
- (b) (i) What is Poynting vector ? If the electric

amplitude of the wave is 5 $\frac{v}{m}$, what is

the magnetic amplitude of this wave ?

- Write four Maxwell's equation in conducting medium and derive wave equation.
- (c) (i) A material has 10 turns per cm of wire wound uniformly upon it which carries a current of 2.0 amp. The flux density in the material is 1.0 Weber/m². Calculate the magnetising force and magnetisation of the material.
 - (ii) What is meant by Hystersis and Hysteresis curve ? How would you use the hysteresis curves to select the material for construction of permanent magnet.

JJ-9913] 3

Do any four of the following :

- (a) Discuss the diffraction of X-rays and Bragg's law. Describe also functioning of a Bragg Spectrometer.
- (b) What are modified and unmodified radiation in Compton scattering ? How Compton explained unmodified radiation ? How Compton effect is measured ?
- (c) A proton is moving with a speed of 2×10⁸ m/s.
 Find the wavelength of matter wave associated with it.
- (d) State and give physical meaning of Heisenberg's uncertainty principle.
 - What is physical significance of wavefunction Ψ used in time independent Schrodinger wave equation ?

(f) A particle is moving in one dimensional potential box of width $25\overset{o}{A}$. Calculate the probability of finding the particle within an interval of $5\overset{o}{A}$ at the centre of the box when it is in its state of least energy.

Physical constants :

Planck's constant h= 6.63×10^{-34} J.s Velocity of light in free space C= 3×10^8 m/s Electronic charge e= 1.6×10^{-19} C Permittivity of free space G_o= 8.85×10^{-12} F/m Permeability of free space $\mu_0 = 4\pi \times 10^{-7}$ H/m Rest mass of electron m_e= 9.1×10^{-31} kg

Mass of proton $m_p = 1.67 \times 10^{-27} kg$.

JJ-9913] 4

[4000]

and all makes

行業 通信

1

(e)