Following	Paper ID and Roll No. to be filled in your	Answer Book)
PAPER I	D : 9601 Roll No.	
(SEM.I)	B. Iech. DDD SEMESTER THEORY EXAMINAT MATHEMATICS—I	TON 2010-11
Time : 3 H	lours Total	Marks : 100
1. All pa	arts of this question are compulsory :	(2×10=20)
(a)	If $u = f\left(\frac{y}{x}\right)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} = \dots$	
(b)	$\partial x \partial y$ The curve $x^{2/3} + y^{2/3} = a^{2/3}$	
	is symmetrical about	
Indic	ate True or False of the following staten	nents :
(c)	(i) Two functions u and v are functionally	y dependent if
	their Jacobian with respect to x and y	is zero.
		(True/False)
	(ii) If $f(x, y) = 1 - x^2y^2$, then stationary points	int is (0, 0). (True/False)
(d)	(i) The minimum value of $f(x, y) = x^2 + y^2$	² is zero.
		(True/False)
	(ii) If u, v are functions of r, s are themselv	es function of
	x, y then $\frac{\partial(u, v)}{\partial(x, y)} = \frac{\partial(u, v)}{\partial(r, s)} \times \frac{\partial(x, y)}{\partial(r, s)}$.	(True/False)
Pick	the correct answer of the choices given	below:
	[1 1 1]	
(e)	The eigen values of $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ are	
	(a) 0, 0, 0 (b) 0, 0, 1 (c) 0, 0, 3	(d) 1, 1, 1

EAS103/VEQ-14700

[Turn Over

(f) The rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ is

(a) 0 (b) 1 (c) 2 (d) 3
$$\beta(m+1,n)$$

(g) $\frac{\beta(m, n)}{\beta(m, n)}$ is equal to

(a)
$$\frac{m}{n}$$
 (b) $\frac{m+1}{n}$ (c) $\frac{m-1}{n}$ (d) $\frac{m}{m+n}$

(h) The value of the integral $\int_{0}^{\infty} e^{-x^2} dx$ is

(a)
$$\frac{2}{\sqrt{\pi}}$$
 (b) $\frac{\sqrt{\pi}}{2}$ (c) $\frac{\pi}{2}$ (d) $\frac{2}{\pi}$

Fill up the blanks with the correct answer :

(i) The Gauss divergence theorem relates certain surface integrals to ______.

(volume integrals/line integrals)

(j) The vector field $\vec{F} = x\hat{i} - y\hat{j}$ is divergence free_____

(but not irrotational/and irrotational)

SECTION-B

2. Attempt any three parts of the following : (10×3=30)

- (a) If $y = \sin(a \sin^{-1} x)$. Find $(y_n)_0$.
- (b) If u, v, w are the roots of the equation

$$(x-a)^3 + (x-b)^3 + (x-c)^3 = 0$$
, then find $\frac{\partial (u, v, w)}{\partial (a, b, c)}$

(c) Find the eigen values and eigen vectors of the matrix

$$\mathbf{A} = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$$

EAS103/VEQ-14700

(d) Change the order of integration in

$$I = \int_{0}^{2} \int_{x^2/4}^{3-x} xy \, dy \, dx$$

and hence evaluate it.

(e) Find the volume enclosed between the two surfaces
$$Z = 8 - x^2 - y^2$$
 and $Z = x^2 + 3y^2$.

SECTION-C

Attempt any two parts from each question. All questions are compulsory. $(5 \times 2 \times 5 = 50)$

(a) Trace the curve $y^2(a - x) = x^3$.

(b) If
$$Z = f(x + ct) + \varphi(x - ct)$$
 show that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$.

- (c) Expand e^{ax} sin by in the powers of x and y as far as terms of third degree.
- (a) A rectangular box, open at the top, is to have a volume of 32 cubic feet. Determine the dimensions of the box requiring least material for its construction.

(b) If
$$u_1 = \frac{x_2 x_3}{x_1}$$
, $u_2 = \frac{x_3 x_1}{x_2}$ and $u_3 = \frac{x_1 x_2}{x_3}$ find the value

of $\frac{\partial (u_1, u_2, u_3)}{\partial (x_1, x_2, x_3)}$.

(c) Find the percentage of error in calculating the area of an

ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, when error of +1% is made in

measuring the major and minor axes.

(a) Test for consistency and solve the following system of equations

$$2x - y + 3z = 8$$
$$-x + 2y + z = 4$$
$$3x + y - 4z = 0$$

EAS103/VEQ-14700

ł.

5.

3

[Turn Over

(b) Reduce the following matrix to normal form and hence find its rank :

> 5 3 14 4 0 1 2 1 1 -1 2 0

Show that the matrix (c)

a + ic - b + id

is unitary if and only if $a^2 + b^2 + c^2 + d^2 = 1$. Prove that

(a)

6.

7.

$$\int_{0}^{1} \frac{dx}{\sqrt{1+x^{4}}} = \frac{1}{4\sqrt{2}} \beta\left(\frac{1}{4}, \frac{1}{2}\right).$$

(b) Evaluate

 $\iiint x^{\ell-1} y^{m-1} z^{n-1} dx dy dz,$

where x > 0, y > 0, z > 0 under the condition

$$\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r \le 1.$$

Find the area of one loop of the lemniscates (c) $r^2 = a^2 \cos 2\theta$.

Find the directional derivative of $\varphi(x, y, z) = xy^2 + yz^3$ at (a) the point (2, -1, 1) in the direction of the normal to the surface x log $z - y^2 + 4 = 0$ at (2, -1, 1).

If all second order derivatives of φ and $\overline{\psi}$ are continuous, (b) then show that

- (i) $\operatorname{curl}(\operatorname{grad} \varphi) = 0$
- (ii) div (curl \vec{v}) = 0
- (c) Find the work done by the force

 $\vec{f} = (2y+3)\hat{i} + xz\hat{j} + (yz-x)\hat{k}$

when it moves a particle from the point (0, 0, 0) to the point (2, 1, 1) along the curve $x = 2t^2$, y = t and $z = t^3$.

EAS103/VEQ-14700