(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 9601 Roll No. \square

B. Tech.

(SEM. I) ODD SEMESTER THEORYEXAMINATION 2010-11 MATHEMATICS-II
Time : 3 Hours
Total Marks : 100

SECTION-A

1. All parts of this question are compulsory :- $\quad(2 \times 10=20)$
(a) If $u=f\left(\frac{y}{x}\right)$ then
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(b) The curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is symmetrical about

Indicate True or False of the following statements :

(c) (i) Two functions u and v are functionally dependent if their Jacobian with respect to x and y is zero.
(True/False)
(ii) If $f(x, y)=1-x^{2} y^{2}$, then stationary point is $(0,0)$.
(True/False)
(d) (i) The minimum value of $f(x, y)=x^{2}+y^{2}$ is zero.
(True/False)
(ii) If u, v are functions of r, s are themselves function of x, y then $\frac{\partial(u, v)}{\partial(x, y)}=\frac{\partial(u, v)}{\partial(r, s)} \times \frac{\partial(x, y)}{\partial(r, s)} . \quad$ (True/False)
Pick the correct answer of the choices given below:
(e) The eigen values of $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ are
(a) $0,0,0$
(b) $0,0,1$
(c) $0,0,3$
(d) $1,1,1$

EAS103/VEQ-14700
(f) The rank of the matrix $\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1\end{array}\right]$ is
(a) 0
(b) 1
(c) 2
(d) 3
(g) $\frac{\beta(m+1, n)}{\beta(m, n)}$ is equal to
(a) $\frac{m}{n}$
(b) $\frac{m+1}{n}$
(c) $\frac{m-1}{n}$
(d) $\frac{m}{m+n}$
(h) The value of the integral $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}$ is
(a) $\frac{2}{\sqrt{\pi}}$
(b) $\frac{\sqrt{\pi}}{2}$
(c) $\frac{\pi}{2}$
(d) $\frac{2}{\pi}$

Fill up the blanks with the correct answer:
(i) The Gauss divergence theorem relates certain surface integrals to \qquad .
(volume integrals/line integrals)
(j) The vector field $\vec{F}=x \hat{i}-y \hat{j}$ is divergence free \qquad . (but not irrotational/and irrotational)

SECTION-B

2. Attempt any three parts of the following :
(a) If $y=\sin \left(a \sin ^{-1} x\right)$. Find $\left(y_{n}\right)$.
(b) If u, v, w are the roots of the equation

$$
(x-a)^{3}+(x-b)^{3}+(x-c)^{3}=0, \text { then find } \frac{\partial(u, v, w)}{\partial(a, b, c)} .
$$

(c) Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

(d) Change the order of integration in

$$
I=\int_{0}^{2} \int_{x^{2} / 4}^{3-x} x y d y d x
$$

and hence evaluate it.
(e) Find the volume enclosed between the two surfaces $Z=8-x^{2}-y^{2}$ and $Z=x^{2}+3 y^{2}$.

SECTION-C

Attempt any two parts from each question. All questions are compulsory.
$(5 \times 2 \times 5=50)$
(a) Trace the curve $y^{2}(a-x)=x^{3}$.
(b) If $Z=f(x+c t)+\varphi(x-c t)$ show that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
(c) Expand $\mathrm{e}^{\mathrm{ax}} \sin$ by in the powers of x and y as far as terms of third degree.
I. (a) A rectangular box, open at the top, is to have a volume of 32 cubic feet. Determine the dimensions of the box requiring least material for its construction.
(b) If $u_{1}=\frac{x_{2} x_{3}}{x_{1}}, u_{2}=\frac{x_{3} x_{1}}{x_{2}}$ and $u_{3}=\frac{x_{1} x_{2}}{x_{3}}$ find the value of $\frac{\partial\left(u_{1}, u_{2}, u_{3}\right)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}$.
(c) Find the percentage of error in calculating the area of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, when error of $+1 \%$ is made in measuring the major and minor axes.
5. (a) Test for consistency and solve the following system of equations

$$
\begin{aligned}
& 2 x-y+3 z=8 \\
& -x+2 y+z=4 \\
& 3 x+y-4 z=0
\end{aligned}
$$

(b) Reduce the following matrix to normal form and hence find its rank :

$$
\left[\begin{array}{rrrr}
5 & 3 & 14 & 4 \\
0 & 1 & 2 & 1 \\
1 & -1 & 2 & 0
\end{array}\right] .
$$

(c) Show that the matrix

$$
\left[\begin{array}{cc}
a+i c & -b+i d \\
b+i d & a-i c
\end{array}\right]
$$

is unitary if and only if $a^{2}+b^{2}+c^{2}+d^{2}=1$.
6. (a) Prove that

$$
\int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}=\frac{1}{4 \sqrt{2}} \beta\left(\frac{1}{4}, \frac{1}{2}\right)
$$

(b) Evaluate

$$
\iiint x^{\ell-1} y^{m-1} z^{n-1} d x d y d z
$$

where $x>0, y>0, z>0$ under the condition

$$
\left(\frac{x}{a}\right)^{p}+\left(\frac{y}{b}\right)^{q}+\left(\frac{z}{c}\right)^{r} \leq 1
$$

(c) Find the area of one loop of the lemniscates

$$
r^{2}=a^{2} \cos 2 \theta .
$$

7. (a) Find the directional derivative of $\varphi(x, y, z)=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the normal to the surface $x \log z-y^{2}+4=0$ at $(2,-1,1)$.
(b) If all second order derivatives of φ and \bar{v} are continuous, then show that
(i) $\operatorname{curl}(\operatorname{grad} \varphi)=\overline{0}$
(ii) $\operatorname{div}(\operatorname{curl} \mid \bar{v})=0$
(c) Find the work done by the force

$$
\overrightarrow{\mathrm{f}}=(2 y+3) \hat{\mathrm{i}}+x z \hat{\mathrm{j}}+(y z-x) \hat{\mathrm{k}}
$$

when it moves a particle from the point $(0,0,0)$ to the point $(2,1,1)$ along the curve $x=2 t^{2}, y=t$ and $z=t^{3}$.

