Printed	Pages—4 EAS103				
Followi	ing Paper ID and Roll No. to be filled in your Answer Book)	filled in your Answer Book)			
PAPER	1D: 9601 Koll No.				
	B.Tech.				
(SEM. I)) ODD SEMESTER THEORY EXAMINATION 2012-13				
	MATHEMATICS—I				
Time : 3	3 Hours Total Marks : 100				
	SECTION—A				
l. All	parts for this question are compulsory : (2×10=20)				
(a)	Find the 8^{th} derivative of x^2e^x .				
(b)	If $x^2 = au + bv$, $y^2 = au - bv$, then find $\left(\frac{\partial u}{\partial x}\right)_y \cdot \left(\frac{\partial x}{\partial u}\right)_v$.				
(c)	Find the stationary points of				
	$f(x, y) = 5x^2 + 10y^2 + 12xy - 4x - 6y + 1.$				
(d)	If $x = u(1 + v)$, $y = v (1 + u)$, then find the Jacobian of				
	u, v with respect to x, y.				
(e)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form.				
(f)	Prove that the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ is unitary.				
	questions are comprisory. 2x 1 ((2×5)				
(g)	Evaluate $\int_{0} \int_{0} x e^{y} dx dy$.				
(h)	Evaluate $\Gamma(-3/2)$.	- and			
(i)	Find the value of m if $\vec{F} = mx\hat{i} - 5y\hat{j} + 2z\hat{k}$ is a solenoidal vector.				
EAS103/D	NLT-44512				
	I I I I I I I I I I I I I I I I I I I				

. .

(j) Find the unit normal at the surface $z = x^2 + y^2$ at the point (1, 2, 5).

SECTION-B

- 2. Attempt any three parts of the following : (3×10=30)
 - (a) If $y = \left(x + \sqrt{1 + x^2}\right)^m$, then find the nth derivative of y at x = 0.
 - (b) Find the maximum and minimum distance of the point (1, 2, -1) from the sphere $x^2 + y^2 + z^2 = 24$.
 - (c) Find the eigen values and eigen vectors of the following matrix :

1	5	10	Γ 3	
	-4	-3	-2	
	7	5	3	

(d) Evaluate $\iiint_V (ax^2 + by^2 + cz^2) dxdydz$ where V is the

region bounded by $x^2 + y^2 + z^2 \le 1$.

(e) Verify Gauss's divergence theorem for the function $\vec{F} = x^2\hat{i} + z\hat{j} + yz\hat{k}$ over unit cube.

SECTION-C

Attempt any two parts from each question of this section. All
questions are compulsory. $[(2 \times 5) \times 5 = 50)]$

- 3. (a) State and prove Euler's theorem for homogeneous functions.
 - (b) Expand $f(x, y) = e^x \tan^{-1} y$ in powers of (x 1) and (y 1)upto two terms of degree 2.

EAS103/DLT-44512

2

(c) If z = f(x, y) where $x = e^u \cos v$, $y = e^u \sin v$, prove that

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2 \right].$$

4. (a) If x + y + z = u, y + z = uv, z = uvw, then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

- (b) The two sides of a triangle are measured as 50 cm and 70 cm, and the angle between them is 30°. If there are possible errors of 0.5% in the measurement of the sides and 0.5 degree in that of the angle, find the maximum approximate percentage error in measuring the area of the triangle.
- (c) Show that u = y + z, $v = x + 2z^2$, $w = x 4yz 2y^2$ are not independent. Find the relation between them.
- 5. (a) Test the consistency and hence, solve the following set of equations :

10y + 3z = 0, 3x + 3y + 2z = 1, 2x - 3y - z = 5,x + 2y = 4.

(b) Using elementary transformations, find the rank of the following matrix :

$$\mathbf{A} = \begin{bmatrix} -2 & -1 & 3 & -1 \\ 1 & 2 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

(c) Examine the following vectors for linearly dependent and find the relation between them, if possible :

3

 $X_1 = (1, 1, -1, 1), X_2 = (1, -1, 2, -1), X_3 = (3, 1, 0, 1).$

EAS103/DLT-44512

[Turn Over

- 6. (a) Prove that : $\sqrt{\pi} \Gamma(2n) = 2^{2n-1} \Gamma(n) \Gamma\left(n + \frac{1}{2}\right)$, where n is not a negative integer or zero.
 - (b) Change the order of integration and hence evaluate

$$\int_{0}^{\infty} \int_{0}^{y} y e^{-y^{2}/x} dxdy$$

- (c) Find the area of the region occupied by the curves $y^2 = x$ and $y^2 = 4 - x$.
- 7. (a) Show that the vector field $\vec{F} = yz\hat{i} + (zx+1)\hat{j} + xy\hat{k}$ is conservative. Find its scalar potential. Also find the work done by \vec{F} in moving a particle from (1, 0, 0) to (2, 1, 4).
 - (b) Prove that :

 $\operatorname{Curl}(\vec{F} \times \vec{G}) = \vec{F} \operatorname{div} \vec{G} - \vec{G} \operatorname{div} \vec{F} + (\vec{G} \cdot \nabla)\vec{F} - (\vec{F} \cdot \nabla)\vec{G}.$

(c) If div $[f(r)\vec{r}] = 0$, where \vec{r} is the position vector of a point (x, y, z), then find f(r).

(1 - 1) = (1 -

EAS103/DLT-44512

143475

1