(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 9601 Roll No.

B.Tech.

(SEM. I) ODD SEMESTER THEORY EXAMINATION 2012-13 MATHEMATICS-I

Time : 3 Hours
Total Marks : 100

SECTION-A

1. All parts for this question are compulsory : $\quad(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0)}$
(a) Find the $8^{\text {th }}$ derivative of $\mathrm{x}^{2} \mathrm{e}^{\mathrm{x}}$.
(b) If $x^{2}=a u+b v, y^{2}=a u-b v$, then find $\left(\frac{\partial u}{\partial x}\right)_{y} \cdot\left(\frac{\partial x}{\partial u}\right)_{v}$.
(c) Find the stationary points of

$$
f(x, y)=5 x^{2}+10 y^{2}+12 x y-4 x-6 y+1
$$

(d) If $x=u(1+v), y=v(1+u)$, then find the Jacobian of u, v with respect to x, y.
(e) Reduce the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 1\end{array}\right]$ into normal form.
(f) Prove that the matrix $\mathrm{A}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+\mathrm{i} \\ 1-\mathrm{i} & -1\end{array}\right]$ is unitary.
(g) Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} x e^{y} d x d y$.
(h) Evaluate $\Gamma(-3 / 2)$.
(i) Find the value of m if $\vec{F}=m x \hat{i}-5 y \hat{j}+2 z \hat{k}$ is a solenoidal vector.
(j) Find the unit normal at the surface $z=x^{2}+y^{2}$ at the point $(1,2,5)$.

SECTION-B

2. Attempt any three parts of the following :
(a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, then find the $n^{\text {th }}$ derivative of y at $\mathrm{x}=0$.
(b) Find the maximum and minimum distance of the point $(1,2,-1)$ from the sphere $x^{2}+y^{2}+z^{2}=24$.
(c) Find the eigen values and eigen vectors of the following matrix :

$$
\left[\begin{array}{rrr}
3 & 10 & 5 \\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right] .
$$

(d) Evaluate $\iiint_{V}\left(a x^{2}+b y^{2}+c z^{2}\right) d x d y d z$ where V is the region bounded by $x^{2}+y^{2}+z^{2} \leq 1$.
(e) Verify Gauss's divergence theorem for the function $\vec{F}=x^{2} \hat{i}+z \hat{j}+y z \hat{k}$ over unit cube.

SECTION-C

Attempt any two parts from each question of this section. All questions are compulsory.
$[(2 \times 5) \times 5=50)]$
3. (a) State and prove Euler's theorem for homogeneous functions.
(b) Expand $f(x, y)=e^{x} \tan ^{-1} y$ in powers of $(x-1)$ and $(y-1)$ upto two terms of degree 2 .
(c) If $z=f(x, y)$ where $x=e^{u} \cos v, y=e^{u} \sin v$, prove that

$$
\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=e^{-2 u}\left[\left(\frac{\partial f}{\partial u}\right)^{2}+\left(\frac{\partial f}{\partial v}\right)^{2}\right]
$$

4. (a) If $x+y+z=u, y+z=u v, z=u v w$, then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
(b) The two sides of a triangle are measured as 50 cm and 70 cm , and the angle between them is 30°. If there are possible errors of 0.5% in the measurement of the sides and 0.5 degree in that of the angle, find the maximum approximate percentage error in measuring the area of the triangle.
(c) Show that $u=y+z, v=x+2 z^{2}, w=x-4 y z-2 y^{2}$ are not independent. Find the relation between them.
5. (a) Test the consistency and hence, solve the following set of equations:

$$
\begin{array}{r}
10 y+3 z=0 \\
3 x+3 y+2 z=1 \\
2 x-3 y-z=5 \\
x+2 y=4
\end{array}
$$

(b) Using elementary transformations, find the rank of the following matrix :

$$
A=\left[\begin{array}{rrrr}
-2 & -1 & 3 & -1 \\
1 & 2 & -3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

(c) Examine the following vectors for linearly dependent and find the relation between them, if possible :

$$
X_{1}=(1,1,-1,1), X_{2}=(1,-1,2,-1), X_{3}=(3,1,0,1)
$$

6. (a) Prove that: $\sqrt{\pi} \Gamma(2 n)=2^{2 n-1} \Gamma(n) \Gamma\left(n+\frac{1}{2}\right)$, where n is not a negative integer or zero.
(b) Change the order of integration and hence evaluate

$$
\int_{0}^{\infty} \int_{0}^{y} y e^{-y^{2} / x} d x d y
$$

(c) Find the area of the region occupied by the curves $y^{2}=x$ and $y^{2}=4-x$.
7. (a) Show that the vector field $\vec{F}=y z \hat{i}+(z x+1) \hat{j}+x y \hat{k}$ is conservative. Find its scalar potential. Also find the work done by \vec{F} in moving a particle from $(1,0,0)$ to $(2,1,4)$.
(b) Prove that:
$\operatorname{Curl}(\overrightarrow{\mathrm{F}} \times \overrightarrow{\mathrm{G}})=\overrightarrow{\mathrm{F}} \operatorname{div} \overrightarrow{\mathrm{G}}-\overrightarrow{\mathrm{G}} \operatorname{div} \overrightarrow{\mathrm{F}}+(\overrightarrow{\mathrm{G}} \cdot \nabla) \overrightarrow{\mathrm{F}}-(\overrightarrow{\mathrm{F}} \cdot \nabla) \overrightarrow{\mathrm{G}}$.
(c) If $\operatorname{div}[\mathrm{f}(\mathrm{r}) \overrightarrow{\mathrm{r}}]=0$, where $\overrightarrow{\mathrm{r}}$ is the position vector of a point (x, y, z), then find $f(r)$.

