(Following Paper ID and Roll No. to be filled in your Answer Book)

B. Tech.

(Semester-I) Theory Examination, 2012-13

MATHEMATICS-I

Time : 3 Hours]
[Total Marks : 100
Note: Attempt questions from each Section as per instructions. The symbols have their usual meaning.

Section- A

Attempt all parts of this question. Each part carries 2 marks. $2 \times 10=20$

1. (a) Find y_{n}, if $y=\frac{a x+b}{c x+d}$.
(b) Find all the asymptotes of the curve $x y^{2}=4 a^{2}(2 a-x)$.
(c) If $z=x y f\left(\frac{x}{y}\right)$, show that :

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=2 z
$$

(d) Determine the point(s) where the function $u=x^{2}+y^{2}+6 x+12$ has a maximum or minimum.
(e) Evaluate $\frac{\sqrt[\left(\frac{8}{3}\right)]{\left(\frac{2}{3}\right)}}{\overline{(}}$.
(f) Change the order of integration :
$\int_{0}^{a} \int_{0}^{2 \sqrt{\mathrm{ay}}} f(x, y) d x d y+\int_{0}^{3 \mathrm{a}} \int_{0}^{3 \mathrm{a}-\mathrm{y}} f(x, y) d x d y$
(g) If \vec{A} and \vec{B} are irrotational, prove that $\vec{A} \times \vec{B}$ is solenoidal.
(h) Find $\int_{C} \hat{t} \cdot d \vec{r}$, where \hat{t} is the unit tangent vector and C is the unit circle in the $x y$ plane about the origin.
(i) If A is a skew-Hermitian matrix, prove that ($i A$) is Hermitian matrix.
(j) Find the sum and product of eigenvalues of the matrix :

$$
\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Section-B

Attempt any three parts of this question. Each part carries 10 marks. $10 \times 3=30$
2. (a) Find y_{3} when $y=\sqrt{1+x^{2}} \cdot \sin x$ by Leibnitz theorem.
(b) If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, then prove that:

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0
$$

(c) Prove that:

$$
\iiint \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}=\frac{\pi^{2} a^{2}}{8}
$$

the integral being extended for all positive values of the variables for which the expression is real.
(d) Apply Stoke's theorem to evaluate :

$$
\oint_{C}[(x+y) d x+(2 x-z) d y+(y+z) d z],
$$

where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.
(e) Find the square matrix A whose eigenvalues are 1,2 and 3 and their corresponding eigenvectors are $[1,0,-1]^{t},[0,1,0]^{t}$ and $[1,0,1]^{t}$ respectively.

Section-C

Attempt all questions of this Section. Attempt any two parts from each question. Each question carries 10 marks.
$10 \times 5=50$
3. (a) If $y=x^{\mathrm{n}} \ln x$, prove that $x y_{\mathrm{n}+1}=n$!.
(b) Prove that:

$$
f\left(\frac{x^{2}}{1+x}\right)=f(x)-\frac{x}{1+x} f^{\prime}(x)+\frac{1}{2!} \frac{x^{2}}{(1+x)^{2}} f^{\prime \prime}(x)-\ldots
$$

(c) Trace the curve $y^{2}(a-x)=x^{2}(a+x)$.
4. (a) If $u=x_{1}+x_{2}+x_{3}+x_{4}, u v=x_{2}+x_{3}+x_{4}$,

$$
u v w=x_{3}+x_{4} \text { and } u \nu w t=x_{4}, \text { find : }
$$

$$
\frac{\partial\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{\partial(u, v, w, t)}
$$

(b) What error in the common logarithm of a number will be produced by an error of 1% in the number?
(c) If $x^{\mathrm{x}} \cdot y^{\mathrm{y}} \cdot z^{\mathrm{z}}=C$, show at $x=y=z$:

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{-1}{x \ln (e x)}
$$

5. (a) Evaluate the integral :

$$
\int_{0}^{\infty} \int_{\mathrm{x}}^{\infty} \frac{e^{-\mathrm{y}}}{y} d y d x
$$

(b) Find, by double integration, the area of the region enclosed by the curves $x^{2}+y^{2}=a^{2}$, $x+y=a$ in the first quadrant.
(c) Show that:

$$
\int_{0}^{1} \frac{d x}{\sqrt{1-x^{\mathrm{n}}}}=\frac{\sqrt{\pi} \cdot \sqrt{\left(\frac{1}{n}\right)}}{n \cdot \sqrt{\left(\frac{1}{n}+\frac{1}{2}\right)}}
$$

6. (a) If $\phi(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$, show that:
$\operatorname{grad} \phi=\frac{\vec{r}-(\hat{k} \cdot \vec{r}) \hat{k}}{\{\vec{r}-(\hat{k} \cdot \vec{r}) \hat{k}\} \cdot\{\vec{r}-(\hat{k} \cdot \vec{r}) \hat{k}\}}$.
(b) If $u=x+y+z, v=x^{2}+y^{2}+z^{2} \quad$ and $w=x y+y z+z x$, show that $\operatorname{grad} u$, grad v and grad w are coplanar.
(c) Consider a vector field:

$$
\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j} .
$$

Show that the field is irrotational and find its scalar potential. Hence evaluate the line integral from $(1,2)$ to $(2,1)$.
7. (a) Find the inverse of the matrix:

$$
\left[\begin{array}{rrr}
i & -1 & 2 i \\
2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

by employing elementary transformations.
(b) Find the value of λ such that the following equations have unique solution :

$$
\begin{aligned}
& \lambda x+2 y-2 z=1 \\
& 4 x+2 \lambda y-z=2 \\
& 6 x+6 y+\lambda z=3
\end{aligned}
$$

(c) Examine the linear dependence of the vectors $[1,-1,1],[2,1,1]$ and $[3,0,2]$. If dependent, find the relation between them.

