Printed Pages—7

EC101

(Following Paper ID and Roll No. to be filled in your Answer Book)								
PAPER ID: 1116	Roll No.							

B.Tech.

(SEM. I) ODD SEMESTER THEORY EXAMINATION 2013-14

ELECTRONICS ENGINEERING

Time : 3 Hours

Total Marks : 100

Note :- All Sections are compulsory.

SECTION-A

- All parts are compulsory. Write short answers by giving proper reasons : (2×10=20)
 - (a) Define the terms conductivity, intrinsic concentration and energy gap of a semiconductor material.
 - (b) A silicon diode has a saturation current of 5 nA at 25°C.
 What is the saturation current at 100°C ?
 - (c) Draw the circuit diagram of peak to peak detector using diode.
 - (d) Enlist the difference between JFET and BJT.
 - (e) A Zener diode regulator circuit has an input voltage that may vary from 22 V to 30 V if the regulated output voltage is 12 V and the load resistance varies from 140 Ω to 10 kΩ. Determine the maximum allowable series resistance.

EC101/DNG-52490

1

[Turn Over

- (f) The BJT circuit has $I_c = 10$ mA and $\alpha = 0.98$. Determine the value of β and I_r .
- (g) In JFET $I_{DSS} = 8 \text{ mA}$, $V_p = -4 \text{ V}$ biased at $V_{GS} = -1.8 \text{ V}$. Determine the value g_m .
- (h) Draw the Capacitance verse Voltage transfer characteristic for the Varactor Diode.
- (i) An OP amp has a slew rate of 15 V/ μ S. What is the power bandwidth for a peak output voltage of 10 V ?
- (j) Write the advantages of Negative Feedback in Amplifiers.

SECTION-B

- 2. Attempt any three parts of the following : (10×3=30)
 - (a) Determine the DC load voltage and ripple voltage for the circuit as shown in Figure 1 :

(b) With the help of block diagram describe the working of a CRO and explain the application and measurement of phase and frequency using CRO.

EC101/DNG-52490

(c) In transistor amplifier circuit as shown in Figure 2, the ac generator has an internal resistance of 600 Ω . Determine the output voltage :

- (d) Draw the structure of a JFET and explain its principle of operation with neat diagrams alongwith its V-I characteristics. Define pinch-off voltage and mark it on the characteristic.
- (e) Draw the basic structure of a CE BJT and explain its principle of operation with neat diagrams alongwith its input output characteristics.

SECTION-C

Note	This Section consists of five theory questions. Each question					
	is of 10 marks.	(10×5=50)				
3.	Attempt any two parts of the following :	(5×2=10)				

(a) The transistor as shown in Figure 3 has $\beta_{dc} = 300$. Calculate

EC101/DNG-52490

3

[Turn Over

 I_{B} , I_{C} , V_{CE} and P_{D} .

-

(b) Sketch V_o of the following network as shown in Figure 4:

Figure 4

(c) A common collector amplifier has a potential divider bias using $V_{cc} = 10 V$, $R_E = 4.3 k\Omega$, $R_1 = 10 k\Omega$, $R_2 = 10 k\Omega$, as shown in Figure 5. Determine the voltage Gain :

EC101/DNG-52490

.

4. Attempt any two parts of the following :

(a) Determine V_o and I_D for the given circuit as shown in Figure 6.
 Diodes are ideal :

(b) The Depletion Mode MOSFET as shown in Figure 7 $V_{GS(off)} = -2 V$, $I_{DSS} = 4 \text{ mA}$ and $g_{mo} = 200 \mu S$. Determine the circuits output Voltage :

(c) Distinguish between enhancement type and depletion type MOSFETs. Draw the cross-section of N-channel enhancement MOSFET. Explain and draw the transfer characteristics.

EC101/DNG-52490

5

[Turn Over

5. Attempt any two parts of the following :

- (a) Explain the Full Wave Voltage Doublers circuit using diode.
- (b) Write a short note on Optoelectronic Device.
- (c) A common source JFET amplifier with Un-bypassed R_s has the following circuit parameters R_D = 15 kΩ, R_s = .5 kΩ, R_G = 1 MΩ, r_d = 5 kΩ, ε_m = 5 mho, V_{DD} = 20 V. Calculate A_v, R_D and R_i as shown in figure 8 :

6. Attempt any two parts of the following :

 $(5 \times 2 = 10)$

- (a) Explain the ideal characteristic of Op-amp. Draw an integrator circuit using op-amp.
- (b) Determine the output voltage for the given Figure 9:

(c) Write a short note on Comparator Circuit using op-amp.

EC101/DNG-52490

7. Attempt any two parts of the following :

- (a) Using a suitable diagram explain the basic principle of a Multimeter and enlist the applications of multimeter.
- (b) Using a suitable Block diagram explain the working of Function generator.
- (c) Explain the Basic principle of Digital Voltmeter.

EC101/DNG-52490

7