Printed Pages—7			ME101				
(Following Paper ID a	and Roll No. t	o be t	filled	in your A	Answe	r Bool	k)
PAPER ID : 1118	Roll No.						

B. Tech.

(SEM. I) ODD SEMESTER THEORY **EXAMINATION 2013-14**

ENGG. MECHANICS

Time : 3 Hours

Total Marks: 100

Note :—(i)Attempt all the questions.

> (ii) Assume missing data suitably, if any.

SECTION-A

- 1. You are required to answer all the parts : $(10 \times 2 = 20)$
 - (a) State and explain law of forces.
 - (b) State Varignon's theorem.
 - (c) What is perfect truss ? How it differ from an imperfect truss?
 - (d) Write down the statement of parallel axis theorem with figure.
 - (e) State D'Alembert's principle.
 - What do you understand by relative velocity? (f)
 - (g) Friction is desirable and undesirable both. Explain.
 - What is the equilibrium ? Write the equations of (h) equilibrium for non concurrent force system.
 - Explain principle of transmissibility of forces. (i)
 - (j) A body of mass 100 kg is moving relative to a rough surface. Calculate the frictional resistance offered by the surface if $\mu_s = 0.3$ and $\mu_k = 0.2$.

1

ME101/DNG-52458

[Turn Over

SECTION-B

2. Answer any three parts of the following :

(a) Find the unknown force F_3 in the system of forces as shown in figure 1, if $F_1 = 100$ N, $F_2 = 150$ N and the resultant of these three forces (F_1 , F_2 and F_3) is 200 N.

(b) An equilateral triangular plate of sides 200 mm is acted upon by four forces as shown in figure-2. Determine the magnitude and direction of the resultant of this system of forces and its position from A.

(c) For the shaded area shown in figure-3, find the moment of inertia about the line AB.

(d) The equation of motion of a particle moving in a straight line is given by :

 $S = 18t + 3t^2 - 2t^3$

where S is the total distance covered from the starting point in meters at the end of t seconds. Find out :

- (i) velocity and acceleration at the start
- (ii) the time when the particle reaches its maximum velocity.
- (e) Two bodies A and B are connected by a thread and move along a rough horizontal plane (μ = 0.3) under the action of a force 400 N applied to body B as shown in figure-4. Find the acceleration of the two bodies and tension in the thread using D'Alembert's principle.

ME101/DNG-52458

3

[Turn Over

SECTION-C

3. Attempt all the questions :

(5×10=50)

(a) Two sphere rest in a smooth surface as shown in figure-5. Find forces at points of contacts.

Two rollers of weights A = 60 N and B = 100 N are connected by a rod in figure-6. Find the tension induced in the rod and the angle that make with the horizontal when the system is in equilibrium.

4

ME101/DNG-52458

(b) Determine the forces in each member of the truss as shown in figure-7.

For a ladder of length 4 m, rest against a vertical wall making an angle of 45°. Determine the minimum horizontal force applied at A to prevent slipping. $\mu = 0.2$ between the wall and ladder, and $\mu = 0.3$ for floor and the ladder. The ladder weight 200 N and a man weight 600 N is at 3 m from A. (Point A is on floor)

(c) Find the centroid of the shaded area with respect to x and y axis by direct integration method. (Ref. figure-8)

5

ME101/DNG-52458

[Turn Over

Find the mass M.I. (Moment of inertia) of a rectangular plate of mass m, base b and height h about the centroidal axis parallel to the base.

(d) A passenger sitting in a train moving at 54 km/hr is hit by a stone thrown at right angles to it with a velocity of 18 km/hr. Calculate the velocity and the direction with which the stone appears to hit the passenger.

OR

A flywheel had an initial angular speed of 3000 rev/min in clockwise direction, when a constant turning moment was applied to the wheel, it got subjected to a uniform anticlockwise angular acceleration of 3 rev/sec². Determine the angular velocity of the wheel after 20 seconds, and the total number of revolutions made during this period.

 (e) A solid cylinder is released from rest on an inclined plane at an angle θ from horizontal. The mass of the cylinder is m and radius is R. Determine the velocity of cylinder after it has rolled down the incline through a distance S.

OR

6

ME101/DNG-52458

In the mechanism shown in figure-9, determine the horizontal force P required to be applied to hold the system in equilibrium. The length of each link is 1 m and weight is W newton. (Using virtual work)

7

ME101/DNG-52458

28650