(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 1118 Roll No. \square

B. Tech.
 (SEM. I) ODD SEMESTER THEORY

EXAMINATION 2013-14
ENGG. MECHANICS
Time : 3 Hours
Total Marks : 100
Note :-(i) Attempt all the questions.
(ii) Assume missing data suitably, if any.

SECTION-A

1. You are required to answer all the parts :
$(10 \times 2=20)$
(a) State and explain law of forces.
(b) State Varignon's theorem.
(c) What is perfect truss? How it differ from an imperfect truss?
(d) Write down the statement of parallel axis theorem with figure.
(e) State D'Alembert's principle.
(f) What do you understand by relative velocity?
(g) Friction is desirable and undesirable both. Explain.
(h) What is the equilibrium ? Write the equations of equilibrium for non concurrent force system.
(i) Explain principle of transmissibility of forces.
(j) A body of mass 100 kg is moving relative to a rough surface. Calculate the frictional resistance offered by the surface if $\mu_{\mathrm{s}}=0.3$ and $\mu_{\mathrm{k}}=0.2$.

SECTION-B

2. Answer any three parts of the following: $\quad(3 \times 10=30)$
(a) Find the unknown force F_{3} in the system of forces as shown in figure 1 , if $\mathrm{F}_{1}=100 \mathrm{~N}, \mathrm{~F}_{2}=150 \mathrm{~N}$ and the resultant of these three forces $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right.$ and $\left.\mathrm{F}_{3}\right)$ is 200 N .

Fig. 1
(b) An equilateral triangular plate of sides 200 mm is acted upon by four forces as shown in figure-2. Determine the magnitude and direction of the resultant of this system of forces and its position from A.

Fig. 2
(c) For the shaded area shown in figure-3, find the moment of inertia about the line $A B$.

Fig. 3
(d) The equation of motion of a particle moving in a straight line is given by :

$$
S=18 t+3 t^{2}-2 t^{3}
$$

where S is the total distance covered from the starting point in meters at the end of t seconds. Find out :
(i) velocity and acceleration at the start
(ii) the time when the particle reaches its maximum velocity.
(e) Two bodies A and B are connected by a thread and move along a rough horizontal plane ($\mu=0.3$) under the action of a force 400 N applied to body B as shown in figure-4. Find the acceleration of the two bodies and tension in the thread using D'Alembert's principle.

Fig. 4

SECTION-C

3. Attempt all the questions:
(a) Two sphere rest in a smooth surface as shown in figure-5. Find forces at points of contacts.

Fig. 5

OR

Two rollers of weights $A=60 \mathrm{~N}$ and $\mathrm{B}=100 \mathrm{~N}$ are connected by a rod in figure-6. Find the tension induced in the rod and the angle that make with the horizontal when the system is in equilibrium.

Fig. 6
(b) Determine the forces in each member of the truss as shown in figure-7.

Fig. 7

OR

For a ladder of length 4 m , rest against a vertical wall making an angle of 45°. Determine the minimum horizontal force applied at A to prevent slipping. $\mu=0.2$ between the wall and ladder, and $\mu=0.3$ for floor and the ladder. The ladder weight 200 N and a man weight 600 N is at 3 m from A . (Point A is on floor)
(c) Find the centroid of the shaded area with respect to x and y axis by direct integration method. (Ref. figure-8)

Fig. 8

OR

Find the mass M.I. (Moment of inertia) of a rectangular plate of mass m, base b and height h about the centroidal axis parallel to the base.
(d) A passenger sitting in a train moving at $54 \mathrm{~km} / \mathrm{hr}$ is hit by a stone thrown at right angles to it with a velocity of $18 \mathrm{~km} / \mathrm{hr}$. Calculate the velocity and the direction with which the stone appears to hit the passenger.

OR

A flywheel had an initial angular speed of $3000 \mathrm{rev} / \mathrm{min}$ in clockwise direction, when a constant turning moment was applied to the wheel, it got subjected to a uniform anticlockwise angular acceleration of $3 \mathrm{rev} / \mathrm{sec}^{2}$. Determine the angular velocity of the wheel after 20 seconds, and the total number of revolutions made during this period.
(e) A solid cylinder is released from rest on an inclined plane at an angle θ from horizontal. The mass of the cylinder is m and radius is R. Determine the velocity of cylinder after it has rolled down the incline through a distance S.

OR

In the mechanism shown in figure-9, determine the horizontal force P required to be applied to hold the system in equilibrium. The length of each link is 1 m and weight is W newton. (Using virtual work)

Fig. 9

