(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 1196 Roll No.

## B.Tech.

# (SEM. I) ODD SEMESTER THEORY EXAMINATION 2013-14

# MATHEMATICS-I

Time: 3 Hours

Total Marks: 100

Note: - Attempt all Sections.

#### SECTION-A

1. All parts of this question are compulsory:

 $(10 \times 2 = 20)$ 

- (a) Find the n<sup>th</sup> derivative of  $y = x^2 \sin x$ .
- (b) Find the stationary points of:  $f(x, y) = 5x^2 + 10y^2 + 12xy - 4x - 6y + 1$
- (c) Find all the asymptotes of the curve:  $xy^2 = 4a^2 (2a - x)$ .
- (d) Find the envelope of the family of straight lines  $y=mx+\frac{a}{m}$ , where m is a parameter.
- (e) Compute  $\Gamma\left(\frac{-5}{2}\right)$ .
- (f) Evaluate eigen values of  $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ .
- (g) Prove that  $\vec{A} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$  is irrotational.

AS101/DNG-52496

[Turn Over

- (h) Evaluate  $\int_{0}^{a} \int_{0}^{x} xy \, dy \, dx$ .
- (i) Find a unit vector normal to the surface:  $x^3 + y^3 + 3xyz = 3$  at the point (1, 2, -1).
- (j) Determine the rank of the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

#### SECTION-B

- 2. Attempt any three parts of the following:  $(3\times10=30)$ 
  - (a) If  $y = (\sin^{-1}x)^2$ , prove that :  $(1 x^2) y_{n+2} (2n+1) xy_{n+1} n^2y_n = 0 \text{ and calculate } y_n (0).$
  - (b) Divide 24 into three parts such that the continued product of the first, square of the second and the cube of the third may be maximum.
  - (c) Find the volume contained in the solid region in the first Octant of the ellipsoid:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(d) Verify Green's theorem in plane for:

$$\oint_C (x^2 - 2xy) dx + (x^2y + 3) dy \text{ where C is the boundary}$$
of the region defined by  $y^2 = 8x$  and  $x = 2$ .

(e) Diagonalise the unitary matrix  $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ -i & -1 \end{bmatrix}$ .

## SECTION-C

- Note: Attempt any two parts from each question. All questions are compulsory:  $(5 \times 2 \times 5 = 50)$
- 3. (a) Expand  $e^{2x} \sin x$  in ascending powers of x upto  $x^5$ .
  - (b) If  $x = \tan(\log y)$ , prove that:  $(1 + x^2) y_{n+2} + [2 (n+1) x - 1] y_{n+1} + n(n+1) y_n = 0.$
  - (c) Find the centre of circle of curvature for : xy(x + y) = 2 at (1, 1).
- 4. (a) If  $J = \frac{\partial(u, v)}{\partial(x, y)}$  and  $J^* = \frac{\partial(x, y)}{\partial(u, v)}$  then show that  $J.J^* = 1$ .
  - (b) Show that:  $xU_x + yU_y + zU_z = -2 \cot u$ .
    - where  $u = cos^{-1} \left( \frac{x^3 + y^3 + z^3}{ax + by + cz} \right)$
  - (c) Find approximate value of:  $[ (3.82)^2 + 2(2.1)^3 ]^{1/5}$
- 5. (a) Evaluate  $I = \int_0^1 \left(\frac{x}{1-x^3}\right)^{\frac{1}{2}} dx$ .
  - (b) Evaluate  $\iint_R (x+y)^2 dx dy$  where R is region bounded by the parallelogram x+y=0, x+y=2, 3x-2y=0, 3x-2y=3.
  - (c) Compute the area bounded by the lemniscate  $r^2 = a^2 \cos 2\theta$ .

- 6. (a) If  $\vec{A} = (x-y)\hat{i} + (x+y)\hat{j}$ , evaluate  $\oint_C \vec{A} \cdot d\vec{r}$  around the curve C consisting of  $y = x^2$  and  $y^2 = x$ .
  - (b) Find the directional derivative of:  $\oint = (x^2 + y^2 + z^2)^{-1/2} \text{ at the point (3, 1, 2) in the direction}$  of the vector  $yz\hat{i} + zx\hat{j} + xy\hat{k}$ .
  - (c) Evaluate  $\oint_C \vec{F} \cdot \vec{dr}$  by Stoke's Theorem, where :  $\vec{F} = y^2 \hat{i} + x^2 \hat{j} (x+z) \hat{k} \text{ and C is the boundary of triangle}$  with vertices at (0,0,0), (1,0,0) and (1,1,0).
- 7. (a) Test the consistency and solve the following system of equations:

$$2x - y + 3z = 8$$
$$-x + 2y + z = 4$$
$$3x + y - 4z = 0$$

(b) If  $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ , find the inverse of A using Cayley-

Hamilton Theorem.

(c) If 
$$A = \begin{bmatrix} 2 & 3+2i & -4 \\ 3-2i & 5 & 6i \\ -4 & -6i & 3 \end{bmatrix}$$

Then show that A is Hermitian and iA is Skew-Hermitian.