（Following Paper ID and Roll No．to be filled in your Answer Book） PAPER ID ： 199125

Roll No． \square
B．Tech．
（SEM．I）（ODD SEM．）THEORY
EXAMINATION，2014－15
ENGG MATHEMATICS－I

Time ： 3 Hours］
［Total Marks ： 100

1 Attempt any FOUR parts ： $5 \times 4=20$
a）If $y^{\frac{1}{m}}+y^{\frac{-1}{m}}=2 x$ prove that

$$
\left(x^{2}-1\right) y_{n-2}+(2 n+1) x y_{n-1}+\left(n^{2}-m^{2}\right) y_{n}=0 .
$$

b）Prove that $x u_{x}+y u_{y}=\frac{5}{2} \tan u$ if

$$
u=\sin ^{-1}\left(\frac{x^{3}+y^{3}}{\sqrt{x}+\sqrt{y}}\right)
$$

c）If $V=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$ prove that

$$
6 V_{x}+4 V_{y}+3 V_{z}=0 .
$$

d) Find $\frac{d u}{d t}$ as a total derivative and verify the result by direct substitution if $u=x^{2}+y^{2}+z^{2}$ and $x=e^{2 t}$,

$$
y=e^{2 t} \cos 3 t, z=e^{2 t} \sin 3 t .
$$

e) Trace the curve $y^{2}(2 a-x)=x^{3}$.
f) Find the curve $r^{2}=a^{2} \cos 2 \theta$.

2 Attempt any TWO parts: $10 \times 2=20$
a) Expand $e^{x} \log (1+y)$ in powers of x and y upto terms of third degree.
b) A rectangle box open at the top is to have 32cubic ft . Find the dimensions of the box requiring least material for its construction.
c) Find $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$ if $x=\sqrt{v w}, y=\sqrt{u w, z}=\sqrt{u v}$ and $u=r \sin \theta \cos \phi, v=r \sin \theta \sin \phi, w=r \cos \theta$.
a) Reduce A to Echelon form and then to its row canonical
form where $A=\left(\begin{array}{cccc}1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5\end{array}\right)$. Hence find the rank
of A.
b) Verify Cayley-Hamilton theorem for $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)$. Hence find A^{-1}.
c) Solve by calculating the inverse by elementary row operations: $x_{1}+x_{2}+x_{3}+x_{4}=0, x_{1}+x_{2}+x_{3}-x_{4}=4$, $x_{1}+x_{2}-x_{3}+x_{4}=-4, x_{1}-x_{2}+x_{3}+x_{4}=2$.

4 Attempt any TWO parts:
$10 \times 2=20$
a) Determine the area bounded by the curves $x y=2$, $4 y=x^{2}$ and $y=4$.
b) Change the order of integration and evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$.
c) Find the volume and the mass contained in the solid region in the first octant of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ if the density at any point $\rho(x, y, z)=k x y z$.
a) If $u=x+y+z, v=x^{2}+y^{2}+x^{2}, w=y z+z x+x y$. Prove that $\operatorname{grad} u, \operatorname{grad} v$ and $\operatorname{grad} w$ are coplanar.
b) Verify Stokes theorem for $F=\left(x^{2}+y^{2}\right) I-2 x y J$ taken around the rectangle bounded by the lines $x= \pm a$, $y=0, y=b$
c) Evaluate $\int_{S}(y z I+z x J+x y K)$.ds where S is the surface of the sphere $x^{2}+y^{2}+x^{2}=a^{2}$ in the first octant.

