

199125]

1

[Contd...

d) Find $\frac{du}{dt}$ as a total derivative and verify the result by

direct substitution if $u = x^2 + y^2 + z^2$ and $x = e^{2t}$,

 $y = e^{2t} \cos 3t \,, \quad z = e^{2t} \sin 3t \,.$

- e) Trace the curve $y^2(2a-x) = x^3$.
- f) Find the curve $r^2 = a^2 \cos 2\theta$.
- 2 Attempt any TWO parts :

10x2=20

- a) Expand $e^x \log(1+y)$ in powers of x and y up to terms of third degree.
- b) A rectangle box open at the top is to have 32cubic ft. Find the dimensions of the box requiring least material for its construction.

c) Find
$$\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$$
 if $x = \sqrt{vw}, y = \sqrt{uw}, z = \sqrt{uv}$ and

 $u = r \sin \theta \cos \phi, v = r \sin \theta \sin \phi, w = r \cos \theta$.

2

199125]

[Contd...

Attempt any TWO parts :

Reduce A to Echelon form and then to its row canonical a)

form where
$$A = \begin{pmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{pmatrix}$$
. Hence find the rank

of A.

- Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$. b) Hence find A^{-1} .
- Solve by calculating the inverse by elementary row c) operations: $x_1 + x_2 + x_3 + x_4 = 0$, $x_1 + x_2 + x_3 - x_4 = 4$, $x_1 + x_2 - x_3 + x_4 = -4$, $x_1 - x_2 + x_3 + x_4 = 2$.

Attempt any TWO parts : 4

10x2=20

- Determine the area bounded by the curves xy = 2, a) $4y=x^2$ and y = 4.
- Change the order of integration and evaluate b)

$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$$

c) Find the volume and the mass contained in the solid

region in the first octant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

if the density at any point $\rho(x, y, z) = kxyz$.

199125]

3

[Contd...

3

Attempt any TWO parts :

5

- a) If u=x+y+z, $v=x^2+y^2+x^2$, w=yz+zx+xy. Prove that grad u, grad v and grad w are coplanar.
- b) Verify Stokes theorem for $F = (x^2 + y^2)I 2xyJ$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b
- c) Evaluate $\int_{S} (yzI + zxJ + xyK)$. ds where S is the surface of the sphere $x^2+y^2+x^2=a^2$ in the first octant.

199125]

101975