
(f) How many phases are present in an unsaturated salt solution?
(g) The density of NaCl is $2.163 \mathrm{~g} / \mathrm{cc}$. calculates the edge of its cubic cell. Assuming that four molecules of NaCl are associated per unit cell.
(h) What is permanent hardness? Write the constituent responsible for permanent hardness.
(i) Give the composition of bio-gas.
(j) Explain why bond energy of N_{2} is greater than bond energy of O_{2}.

Section-B

Attempt any five questions from this section. $\quad(10 \times 5=50)$
2. Derive Bragg's equation. When an electron in an excited molybdenum atom falls from the L to the K shell, an x -ray is emitted. These X-rays are diffracted at angle of 7.75° by planes with a separation of $2.64 \AA$. What are the difference in energy between the K shell and K shell in molybdenum, assuming a first order differaction? (Give that $\mathrm{h}=6.62 \times 10^{-34}$).
3. (i) A sample of coal was found to have the following percentage composition:
$\mathrm{C}=75 \%, \mathrm{H}=5.2 \% \mathrm{O}=12.1 \% ; \mathrm{N}=3.2 \%$ and $\mathrm{ash}=$ 4.5% Calculate the minimum amount of air is required for complete combustion of 1 kg of coal sample.
(ii) Write short note on conducting polymers.
4. Define the term Chromophore and Auxochrome in UV spectroscopy. An organic compound having molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$ shows absorption peaks at 3010,2700 , $1600,1580,1520,1480$, and $1270 \mathrm{~cm}^{-1}$ in its IR spectrum. Suggest its structure.
5. Discuss the stereochemical implications of $\mathrm{SN}^{1} \& \mathrm{SN}^{2}$ reaction.
6. Define phase rule. Apply phase rule to water system.
7. What is the basic principle of Lime Soda process? A water sample, using $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ as a coagulant at the rate of 139 ppm gave the following results on analysis.
$\mathrm{Ca}^{2+}=160 \mathrm{ppm} ; \quad \mathrm{CO}_{2}=88 \mathrm{ppm}$
$\mathrm{Mg}^{2+}=72 \mathrm{ppm} ; \quad \mathrm{HCO}_{3}=488 \mathrm{ppm}$
Calculate the lime and soda required to soften $1,00,000$ liters of water.
P.T.O.
8. Write short notes on:
(a) E,Z nomenclature.
(b) Conformation of n-butane.
9. Explain various methods of preparation of Grignard reagent and also write it's at least five applications.

Section-C

Attempt any two questions from this section. $\quad(15 \times 2=30)$
10. (a) What is Portland cement? Give the chemical reactions involved during setting and hardening of cement.
(b) Explain reverse osmosis.
(c) What are biodegradable polymers? Discuss their application
11. (a) Write the preparation, properties and applications of:
(i) Butyl rubber
(ii) HDPE
(b) How will you distinguish between the following pairs of compounds on the basis of infrared spectroscopy?
(i) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
(c) With the help of Molecular orbital diagram explain why NO molecule is paramagnetic.
12. (a) What is Crystal imperfection? Explain the one dimensional imperfection in solid.
(b) Explain sacrificial anodic and impressed cathodic protection method for prevention of corrosion.
(c) In an experiment in a bomb calorimeter, a solid fuel of 0.90 g is burnt. It is observed that increase of temperature is $3.8^{\circ} \mathrm{C}$ of 4000 g of water. The fuel contains 1% of H. calculate the H.C. V. and L.C.V. value (Water equivalent of calorimeter $=$ 385 g , latent heat of steam $=587 \mathrm{cal} / \mathrm{g}$).
\qquad

