Printed Page 1 of 2

Paper Id: 199102 Sub Code:KAS102

B. TECH. (SEM-I) THEORY EXAMINATION 2019-20 CHEMISTRY

Time: 3 Hours

it.

1. Qno.

a.

b.

c.

d.

e.

Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt *all* questions in brief. $2 \times 10 = 20$ Question Marks CO Compare and arrange the following in the increasing order of stability: 2 1 $N_2, N_2^+, N_2^-, N_2^{2-}$ Define schottky defect. Give example. 2 1 What is Stokes and anti-stokes lines in Raman spectrum? 2 2 'IR spectra are often characterized as finger print region'. Comment on 2 2 Explain why does part of a nail inside the wood undergoes 2 3 corrosioneasily?

f.	Predict the number of phases in saturated NaCl system.	2	3	
g.	A water sample contains 10ppm of CaCl ₂ ,3.2 mg/litre of NaCl, 21.1 °Fr	2	4	
	of Al ₂ O ₃ . Calculate total hardness of water.			
h.	A sample of coal has following composition by mass $C = 70 \%$, $O = 8 \%$,	2	4	
	H = 10%, N = 3 %, S = 2%, Ash = 7 %. Calculate H.C.V. and L.C.V of			
	the fuel.		0	Ω
1.	Simple molecules do not polymerize. Justify.	2	5	2
j.	Illustrate various applications of polymer composites.	2 0	5	

SECTION B

2. Attempt any *three* of the following:

$3 \times 10 = 30$

Qno.	Question	Marks	СО
a.	With the help of molecular orbital diagram, explain the formation of NO	10	1
	and O ₂ molecule. Calculate their bond order and predict their magnetic		
	behavior.		
b.	State and derive the Lambert-Beer's law. The percentage transmittance	10	2
	of an aqueous solution of unknown compound is 20% at 25° C and 300		
	nm for a 2 x 10^{-5} M solution in a 4 cm cell. Calculate the absorbance and		
	the molar extinction coefficient.		
c.	Using phase rule outline the salient features of the phase diagram of	10	3
	water system highlighting the name of system (areas, curves and points),		
	phase inequilibrium and degree of freedom in each case.		
d.	Discuss the principle and working of bomb calorimeter.	10	4
	A sample of coal contain C=80%, H=15% and ash=5%. The following		
	data were obtained when the above coal was tested in bomb calorimeter:		
	Weight of coal burnt= 0.98 g		
	Weight of water taken= 1000 g		
	Water equivalent of bomb, thermometer, stirrer & calorimeter= 2500g		
	Rise in temperature= 2.5° C		
	Fuse wire correction= 8 Cal		
	Acid correction= 50 Cal		
	Cooling Correction= 0.02 °C		
	Calculate gross and net calorific values of the coal, (if the latent heat of		
	vaporization is 580 cal/g)		
e.	Write down the preparation, properties and applications of –	10	5
	i) Buna-N ii) Nylon 6,6 iii) Terylene (iv) Neoprene (v) Kevlar		

Printed Page	e 2 of 2
Paper Id:	199

Roll No:										
----------	--	--	--	--	--	--	--	--	--	--

SECTION C

Attempt any one part of the following: 3.

199102

$1 \ge 10 = 10$

Qno.	Question	Marks	CO
a.	Discuss the preparation, properties and applications of an allotrope of	10	1
	carbon having truncated icosahedron geometry.		
b.	Illustrate the concept of liquid crystals. Classify them on the basis of	10	1
	temperature and mention their important applications.		
4.	Attempt any one part of the following:	1 x 10 =	= 10

Qno.	Question	Marks	CO
a.	State the selection rule for Raman spectroscopy. What technological	10	2
	advances have enabled the routine use of Raman Spectroscopy? Which		
	of the following spectroscopy (IR or Raman) would you use to measure		
	the vibrational frequency of the following bond?		
	(ii) the stretching frequency of ¹⁴ N, ¹⁵ N		
	(ii) the C=O structure in ethyne (CH≣CH)		
b.	Write short notes on (any TWO)	10	2
	(i) UV Shift (ii) Applications of IR spectroscopy (iii) Molecular vibration		
5.	Attempt any one part of the following:	1 x 10 =	= 10

Qno.	Question	Marks	CO
a.	Describe electrochemical theory of corrosion. How corrosion can be	10	3
	prevented by sacrificial anodic protection and impressed current cathodic protection.	0	<i>.</i> С
b.	What is Nernst equation? The emf of a cell measured by means of a	10	3
	hydrogen electrode against a saturated calomel electrode at 298K is	6	
	0.4188 V. If the pressure of the H_2 (g) was maintained at 1atm, calculate		
	the pH of the unknown solution, given potential of reference calomel	0	
	electrode is 0.2415 V.		
-			

6. Attempt any *one* part of the following:

 $1 \ge 10 = 10$

	The second s	-	-
Qno.	Question	Marks	СО
a.	Calculate the amount of lime and soda required for 125000 L of H ₂ O with following analysis using 10 ppm of NaAlO ₂ as coagulant. Analysis of raw water: $Ca^{2+} = 95$ ppm, $Mg^{2+} = 36$ ppm, $CO_2 = 66$ ppm.	10	4
	$HCO_3^- = 244 \text{ ppm}, \text{H}^+ = 2 \text{ ppm},$ Analysis of treated water: $CO_3^{2-} = 45 \text{ ppm}, \text{OH}^- = 34 \text{ ppm}.$		
b.	i. Outline demineralization process of water softening. Compare the merits and demerits of zeolite process with demineralization process.	10	4
	ii. Write the reaction involved in Calgon treatment of water.		
7.	Attempt any one part of the following:	1 x 10 =	= 10

Qno.	Question			
a.	What are conducting polymers? Discuss the classification and applications of conducting polymers.	10	5	
b.	What are Grignard reagents? Write at least five applications of Grignard reagent.	10	5	