Paper Id:
Roll No: \square

B. TECH.
 (SEM I) THEORY EXAMINATION 2019-20
 MATHEMATICS-I

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions.

Q. No.

Question
a. Show that vectors $(1,6,4),(0,2,3)$ and $(0,1,2)$ are linearly independent.
b. Define Lagrange's mean value theorem.
c. If $u=x(1-y), v=x y$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
d. Show that vector $\vec{V}=(x+3 y) \hat{\imath}+(y-3 z) \hat{\jmath}+(x-2 z) \widehat{K}$ is solenoidal.
e.

Find the value of ' b ' so that rank of $A=\left[\begin{array}{lll}2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & b\end{array}\right]$ is 2 .
f. \quad Evaluate $\int_{0}^{2} \int_{0}^{1}\left(x^{2}+3 y^{2}\right) d y d x$.
g. \quad Find grad \emptyset at the point $(2,1,3)$ where $\emptyset=x^{2}+y z$
h. If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.
i. \quad Find $\frac{d u}{d t}$ if $u=x^{3}+y^{3}, x=a \cos t, y=b \sin t$.
j. Find the area lying between the parabola $y=4 x-x^{2}$ and above the Marks CO 21 22
23

25

21

24 line $y=x$.

SECTION B

2. Attempt any three of the following:

Q. No.

Question
Marks CO
a. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 1\end{array}\right]$ and $10 \quad 1$ hence find A^{-1}.
b. If $y=e^{m \cos ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-$ 10 $\left(n^{2}+m^{2}\right) y_{n}=0$. Hence find y_{n} when $x=0$.
If $u^{3}+v^{3}+w^{3}=x+y+z, u^{2}+v^{2}+w^{2}=x^{3}+y^{3}+z^{3} \quad$ and
c. $u+v+w=x^{2}+y^{2}+z^{2}$, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=\frac{(x-y)(y-z)(z-x)}{(u-v)(v-w)(w-u)}$. Evaluate the integral by changing the order of integration: $I=$
d. $\quad \int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$.

Verify Stoke's theorem for the vector field $\vec{F}=\left(x^{2}-y^{2}\right) \hat{\imath}+2 x y \hat{\jmath}$
e. integrated round the rectangle in the plane $z=0$ and bounded by the 10 5 lines $x=0, y=0, x=a, y=b$.

SECTION C

Paper Id: \square

3. Attempt any one part of the following:

Q. No.

Question
Marks CO
a. For what values of λ and μ the system of linear equations:

$$
\begin{align*}
& x+y+z=6 \\
& x+2 y+5 z=10 \\
& 2 x+3 y+\lambda z=\mu
\end{align*}
$$

has (i) a unique solution (ii) no solution (iii) infinite solution
Also find the solution for $\lambda=2$ and $\mu=8$.
b.

Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6\end{array}\right]$ by reducing it to normal form.
4. Attempt any one part of the following:
Q. No.

Question
Marks CO
a. Verify the Cauchy's mean value theorem for the function e^{x} and e^{-x} in the interval $[a, b]$. Also show that ' c ' is the arithmetic mean between a 10 and b.
b. Trace the curve $r^{2}=a^{2} \cos 2 \theta$.
5. Attempt any one part of the following:
Q. No.

Question
a. If $u=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$, prove that $\frac{1}{2} \frac{\partial u}{\partial x}+\frac{1}{3} \frac{\partial u}{\partial y}+\frac{1}{4} \frac{\partial u}{\partial z}=$ 0.
b. Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
6. Attempt any one part of the following:
Q. No.

Question
Marks CO
a. Evaluate $\iint(x+y)^{2} d x d y$, where R is the parallelogram in the $x y$ plane with vertices $(1,0),(3,1),(2,2),(0,1)$ using the transformation $u=x+y, v=x-2 y$.
b. Find the volume of the region bounded by the surface $y=x^{2}, x=y^{2}$ and the planes $z=0, z=3$.

7. Attempt any one part of the following:

Q. No.

Question

Marks CO
a. Verify the divergence theorem for $\vec{F}=4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \widehat{K}$ taken over the rectangular parallelepiped $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
b. Find the directional derivative of $\emptyset(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$. Find also the greatest rate of increase of 10 5 \emptyset.

