

Printed Pages: 7 TME – 201

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 4039

Roll No.

B. Tech.

(SEM. II) EXAMINATION, 2006-07 MECHANICAL ENGINEERING

Time: 3 Hours] [Total Marks: 100]

Note: (1) Answer all questions.

- (2) Use of steam table and Mollier's chart is permitted.
- (3) Assume missing data if any.
- 1 Attempt any four parts of the following: $4\times5=20$
 - a) Explain the concept of continuum, with suitable examples.
 - A closed system whose initial volume is
 x 10⁴ cc undergoes a non-flow reversible process for which pressure and volume correlation is given by

P=(8-4V) where p in bar and V in m³ if 200 kJ of work is supplied to the system. Determine

- i. final process
- ii. final volume after the completion of process.

V-4039] 1 [Contd...

- c) Steam enters into a steam turbine with a velocity of 30 m/s and enthalpy of 2610kJ/kg and leaves with a velocity of 10m/s and enthalpy of 2050 kJ/kg. Heat is lost to the surrounding due to temperature, difference is 280 kJ/min and steam consumption rate of the turbine is 6000 kg/hr. Stating your assumptions calculate the power developed by the steam turbine.
- d) Which is more effective way to increase the efficiency of a reversible heat engine (i) to increase the source temperature \mathbf{T}_1 while sink temperature \mathbf{T}_2 kept constant or (ii) to decrease the sink temperature by the same amount while source temperature in constant.
- e) What is entropy? When entropy is defined only in terms of reversible process, how can then it be evaluated for an irressible process?
- f) A metal block of **5 kg** and **200°C** is cooled in a surrounding of air which is at **30°C**. If specific heat of metal is **0.4 kJ/kgK** calculate the following:
 - i) entropy change of block
 - ii) entropy change of surrounding & universe.

2. Attempt any **two** parts :

 $10 \times 2 = 20$

a) i) With the help of neat sketches explain the working of a **4** stroke **SI** engine.

- ii) With the help of FS diagrams, explain as to how the Rankine cycle overcomes the limitations of comet vapour cycle for steam turbine power plant.
- b) For a steam power plant following observation was made:-

Supply condition of steam : 60 bar 450°C

Condenser pressure: 0.10 bar

Steam flow rate: 5000 kg/hr.

Calculate the following:-

- i) Turbine work
- ii) % of pump work compared to turbine work
- iii) Heat addition in boiler
- iv) Heat rejection in condenser
- v) Thermal efficiency.
- c) An engine working on diesel cycle has air intake condition of 1 bar and 310° k and compression ratio is 17. Heat added at pressure is 1250 kJ/kg. Make calculation for the maximum temperature of the cycle, net power output and thermal efficiency of the cycle.
- 3 Attempt any two parts of the following: $10 \times 2 = 20$
 - a) Explain the followings:
 - Necessary and sufficient conditions of equilibrium of a system of coplanar concurrent forces.

- ii) Concept of free body diagram with the help of suitable examples.
- iii) Angle of repose and its applications
- iv) Belt friction and its applications.
- b) A plate measuring $(4 \times 4)m^2$ is acted upon by 5 forces in its plane as shown in **fig.1**. Determine the magnitude and direction of the resultance force.

c) A ladder 3 m long and weighing 250 N is placed against a wall with end B at floor level and A on the wall. In addition to self weight, the ladder supports a man weighing 1200 N at 2.5 m from B on the ladder. If co-efficient of friction at wall is 0.25 and at floor is 0.35 and if ladder makes an angle 60° with the floor, find the minimum horizontal force which if applied at B will prevent the slipping of the ladder.

- a) i) Define and differentiate between a perfect, deficient and redundant truss.
 - ii) Derive the relationship between shear force, bending moment and the loading for a beam. What are the assumptions required for this derivation?
- b) Determine the magnitude and nature of forces with the members of truss shown in **fig. 2**.

Fig. 2

c) Draw the SF and B.M Diagram for the beam shown in **fig.3**.

Fig. 3

[Contd..

- Draw stress-strain curve for a ductile and brittle material on a simple diagram. What are the differences between these two curves.
- Determine the stress in all the three sections and b) total deformation of the steel rod shown in Fig.4. Cross sectional area = 10cm^2 , E=200

Calculate the normal and shear stress on the c) plane inclined at an angle $60\,^\circ\,$ for the stress shown in fig.5. Also calculate the value of principal stress and its location.

V-4039]

d) Derive the torsion formula.

$$rac{oldsymbol{T}}{oldsymbol{J}} = rac{oldsymbol{ au}}{oldsymbol{r}} = rac{oldsymbol{G} heta}{oldsymbol{L}}$$

Enumerate the assumptions that are made in deriving this formula.

- e) Determine the dimensions of a simply supported rectangular steel beam 6m long to carry a brick wall 250 mm thick and 3 m high, if the brick work weights 19.2 kN/m³ and maximum permissible bending stress is 800 N/cm². The depth of beam is 3/2 times its width.
- f) A solid circular shaft transmits **75** kW power at **180 rpm**. Calculate the shaft diameter if the twist in the shaft is not to exceed **1** degree in **2** m length and shear stress is limited to **50MN/m²**. Take modules of rigidity G = 100GN/m².