

Printed Pages: 7

TEE - 201

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 2019 Roll No.

B. Tech.

(SEM. II) EXAMINATION, 2007-08 ELECTRICAL ENGG.

me: 3 Hours] [Total Marks: 100

- Attempt any four parts of the following: $4 \times 5 = 20$
 - (a) An alternating voltage is V=100 sin 100 t; find
 - (i) Amplitude
 - (ii) Time period and frequency
 - (iii) Angular velocity
 - (iv) Form factor
 - (v) Crest factor.
 - Determine the following in the circuit shown in Fig 1b.
 - (i) The current phasors I, I₁ and I₂.
 - (ii) Active Power dissipated in the three resistive branches.
 - (iii) Power factor of the circuit.

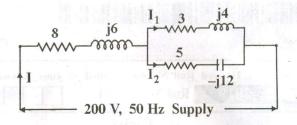
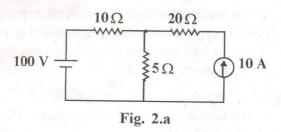


Fig. 1b


- (c) Explain the concept of bandwidth and quality factor for a series R-L-C circuit. Derive their expression
- (d) Establish the analogy between electric and magnetic circuits.
- (e) An effective voltage of 100 V is applied to the parallel combination of two impedances $\overline{Z}_1 = R_1 + jX_1$ and $\overline{Z}_2 = R_2 + jX_2$. Assume that $R_1 = 3 \Omega$ and $R_2 = 4 \Omega$ and the magnitude of the two branch currents are same; determine the values of X_1 , X_2 and the resultant source current.
- (f) A ring of ferromagnetic material has a rectangular cross section. The inner diameter is 7.4 in., the outer diameter is 9 in., and the thickness is 0.8 in. There is a coil of 600 turns wound on the ring. When the coil carries a current of 2.5A, the flux produced in the ring is $1.2 \times 10^{-3} Wb$.

Find:

- (i) Magnetic field intensity
- (ii) Reluctance
- (iii) Permeability.
- Attempt any four parts of the following:

 $4\times5=20$

- (a) Find the currents in all the resistive branches of the circuit shown in Fig 2.a by
 - (i) KVL
 - (ii) KCL

(b) Determine the value of current through the 5 Ω resistance using Norton's theorem in the circuit shown in fig 2.b. State whether superposition theorem can be applied for the circuit with reasons.

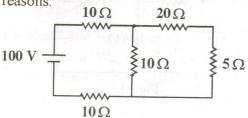


Fig. 2.b

3

- In the network shown in Fig 2.c find (c)
 - The value of RL for maximum power (i) dissipation.
 - The value of the maximum power.

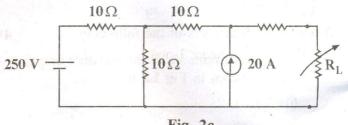
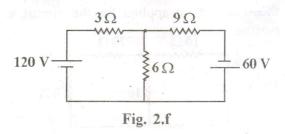



Fig. 2c

- Explain the construction and working principle of (d) a PMMC type instrument. What will it give as output if a half wave rectified ac having peak value of 100 is given as input?
- (e) Explain the construction and working principle of a Moving Iron attraction type instrument. Why is its scale non-uniform?
- (f) In the circuit shown in fig 2.f, find the current through the 6Ω register using superposition theorem.

- (a) Derive and explain the two Wattmeter method of measurement of three phase power for a balanced star connected load. How is the three phase power determined? Discuss the variations in readings for different power factors of loads from unity to zero.
- (b) A balanced 3-phase star-connected load of 180 kW taking a leading current of 60 amperes when connected across a 3-phase 440 V, 50 Hz supply. Find the values and nature of the load components and also power factor of the load.
- (c) Draw the phasor diagram of a single phase transformer for leading power factor load.

The efficiency of a 400 kVA, single phase transformer is 98.77% at full load 0.8 power factor and 99.13% at half full load unity power factor.

Find .

- Iron losses at full and half full-loads
- (ii) Cu losses at full and half full loads.
- Attempt any four parts of the following: $4 \times 5 = 20$
 - (a) Draw and explain the load characteristics of a DC generator. What is the reason for the difference in the load characteristics for a self and separately excited DC generator?

- (b) Derive the EMF equation of a DC generator. What are Lap and Wave windings? Which among them is used for high current and which for high voltage DC generator?
 - (c) A DC generator (self-excited) fails to build up.
 Discuss the reasons and remedies for the problem.
 - (d) Briefly explain the various speed control methods of a DC motor. Which one of them is called constant torque method and why?
 - (e) A DC shunt motor runs at 600 rpm taking 60 A from a 230 V supply. Armature resistance is 0.2 ohm and field resistance is 115 ohms. Find the speed when the current through the armature is
 - (f) Draw and explain the torque-speed, torque-current and speed current characteristics of a DC series motor. Give two applications of the DC motor.
- 5 Attempt any two parts of the following: 2×10=20
 - (a) Derive and draw the torque-slip characteristics of a 3-phase Induction motor. Show, the Breaking and Generating regions explaining the particular values of slips in these two regions.
 - (b) Explain power flow in a 3-phase Induction Motor. Derive the relationship

$$P_g: P_{mech}: P_{cu}=1: (1-S): S$$

Why is the core loss neglected in the rotor circuit of a 3-phase induction motor?

- (c) Write short notes on the following:
 - (i) How the motors generally used in ceiling fans of daily use, are made self starting?
 - (ii) Rotating magnetic field in a 3-phase induction motor.
 - (iii) Induction motor as a transformer.