

Printed Pages: 7

EAS - 101 / EAS - 201

(Following	Paper	ID	and	Roll	No.	to	be	filled	in	your	Answer	Book)
------------	-------	----	-----	------	-----	----	----	--------	----	------	--------	------	---

PAPER ID: 9611

Roll No.

B. Tech.

(SEM. II) EXAMINATION, 2008-09 ENGG. PHYSICS - II

Time: 2 Hours]

[Total Marks: 50

Note: This question paper contains three sections.

SECTION - A

1	Atten	npt all	parts.	All	parts	carry	equal		10×1=10
1.60	mark	s :							
	(a)	The w	ave na	ture	of ma	terial	particles	was	first
		propo	sed by						

(b) In Compton Effect, a photon scattered at right angle to the incident direction, the Compton shift will be

Pick the correct choice from following:

(c) The quantized energy of a particle of mass m in a one dimensional box of length L is given by

1

- (i) $n^2h^2/2mL^2$
- (ii) $n^2h^2/8mL^2$

(iii)
$$n^2 \pi^2 h^2/2mL^2$$

(iv)
$$n^2h^2/8 \pi^2 mL^2$$

- (d) In dielectrics, the polarization is
 - (i) Linear function of applied electric field
- (ii) Square function of applied electric field
 - (iii) Exponential function of applied electric field
 - (iv) None of the above
- (e) The Clausius-Mossotti relation is

(i)
$$\frac{\varepsilon_r - 1}{\varepsilon_r + 1} = \frac{N \alpha}{3 \varepsilon_0}$$

(ii)
$$\frac{\varepsilon_r + 1}{\varepsilon_r - 2} = \frac{N \alpha}{3 \varepsilon_0}$$

(iii)
$$\frac{\varepsilon_r + 1}{\varepsilon_r - 1} = \frac{3N\alpha}{\varepsilon_0}$$

(iv)
$$\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{N \alpha}{3\varepsilon_0}$$

- Ultrasonic wave can be detected by (f)
 - a telephone (i)
 - (ii) Quincle's method
 - (iii) Kundt's method
 - (iv) Hebb's method.
- Statement that displacement current between the (g) plates of a capacitor
 - flows when charge decreasing on the plates
 - flows when charge increasing on the (II)plates
 - flows when charge remain constant on (III)the plates
 - (IV) flows when no charge on the plates Choose the correct one:
 - Statements (I) and (II) are correct (i)
 - (ii) Statement (II) is correct
 - (iii) Statements (III) and (IV) are correct
 - (iv) Statement (IV) is correct
- The ratio of electric field E and magnetic field H(h) has the dimension of
 - (i) Power
 - (ii) Resistance
 - (iii) Inductance
 - (iv) Capacitance.

- (i) Hard superconductors observe
 - breakdown of Silsbee's rule (i)
 - (ii) incomplete Meissner effect
 - (iii) high critical field and transition temperature
 - (iv) all the above Sement that displace
- The Chemical Vapours Deposition is a technique in (i) nanotechnology for
 - determination of the size of nanoparticles (i)
 - (ii) identification of nanoparticles
 - (iii) characterization of nanoparticles
 - (iv) synthesis of carbon nanotubes.

SECTION - But second

- Attempt any three parts. All parts carry 3×5=15 2 equal marks : (11) bas (111) streaments
- The kinetic energy of an electron (a) 4.55 \times 10⁻²⁵ J. Calculate velocity, momentum and the wavelength of the electron.
 - Calculate the uncertainty in the position (b) of a dust particle with mass equal to 1 mg if uncertainty in its velocity is 5.5×10^{-20} m/s.

4

- (c) The dielectric constant of helium at 0°C and 1 atmospheric pressure is 1.000074. Find the dipole moment induced in helium atom when the gas is in an electric field of intensity 100 volt/m. Number of atoms per unit volume of helium gas are 2.68 × 10²⁷.
- (d) The permeability, permittivity and conductivity of aluminium are $\mu_r = 1$, $\epsilon_r = 1$ and $\sigma = 3.54 \times 10^7 \ mho/m$. Find the skin depth if the wave enter in aluminium with frequency of 71.56 MHz.
- (e) A superconducting material has a critical temperature of 3.7°K in zero magnetic field and a critical field of 0.0306 Tesla at 0°K. Find the critical field at 2°K.

SECTION - C

Note: Attempt all questions. All questions 5×5=25 carry equal marks.

- 3 Attempt any one part of the following:
 - (a) Distinguish between group velocity (V_g) and phase velocity (V_p) of a wave packet and show that $V_pV_g=C^2$.

[Contd..

- (b) Derive time dependent Schrödinger wave equation.
- 4 Attempt any one part of the following:
 - (a) Describe Bragg's spectrometer and explain how it is used to study the structure of crystals.
 - (b) What do you mean by polarization of a substance? Write different mechanism of polarization in a dielectric.
- 5 Attempt any one part of the following:
 - (a) Show that the magnetic susceptibility of a diamagnetic material is negative and independent of temperature.
 - (b) What are ultrasonic waves? Explain how they are produced using magnetostriction method.
- 6 Attempt any one part of the following:
 - (a) Derive and explain Poynting theorem.
 - (b) Write down Maxwell's equations in free space and using these equations derive wave equations for both electric and magnetic fields.

- 7 Attempt any one part of the following:
 - (a) What are type I and type II superconductors?Explain.
 - (b) Describe buckyballs and their properties and uses.

Physical constants:

Planck's constants

$$h = 6.6 \times 10^{-34} \text{ J-s}$$

Velocity of light in vacuum $c = 3 \times 10^8$ m/s

Rest mass of electron

$$m = 9.1 \times 10^{-31} \text{ kg}$$