Printed Pages: 8

EAS-201

(Following Paper ID an	d Roll No. to	be f	illed	in yo	ur An	swer l	Book)
PAPER ID: 9611	Roll No.					П	Ti

B. Tech.

(Second Semester) Theory Examination, 2010-11 ENGINEERING PHYSICS-II

Time: 2 Hours]

[Total Marks: 50

Note: All questions are compulsory.

Section-A

- Attempt all parts. All parts carry equal marks. 1×10=10
 - (a) If the wavelength associated with a proton and a photon is same, then which of the following quantities will be same for both of them?
 - (i) Mass
 - (ii) Momentum
 - (iii) Velocity
 - (iv) Kinetic energy.
 - (b) The Compton shift is not observable with:
 - (i) X-rays
 - (ii) γ-rays
 - (iii) Visible rays
 - (iv) None of the above.

- (c) If the lowest energy for a certain particle
 entrapped in a one-dimensional potential box is
 40 eV, its next higher energy will be:
 - (i) 80 eV
 - (ii) 120 eV
 - (iii) 160 eV
 - (iv) 240 eV.
- (d) The electronic polarizability α_e of a monoatomic gas atom is:
 - (i) $4\pi\epsilon_0 R^3$
 - (ii) 4πε₀ R
 - (iii) $\frac{4}{3}\pi\epsilon_0 R^3$
 - (iv) 4πε₀.
 - (e) In a ferroelectric material, the temperature at which the hysteresis loop merges into a straight line is called:

- (i) Critical temperature
- (ii) Fermi temperature
- (iii) Curie temperature
- (iv) Deby temperature.
- (f) Ultrasonic waves produced in a medium can be detected by:
 - (i) Hebbs method
 - (ii) Quincke's tube method
 - (iii) Kundt's tube method
 - (iv) All the above.
- (g) The electric and magnetic field in an electromagnetic wave, going through vacuum, is described by $E = E_0 \sin(kx \omega t) \text{ and } B = B_0 \sin(kz \omega t), \text{ then :}$
 - (i) $E_0 k = \omega B_0$
 - (ii) $E_0B_0=\omega k$
 - (iii) $E_0 \omega = B_0 k$
 - (iv) None of the above.

(h)	The property of the material which does not show					
	an appreciable change in superconducting state					
	as compared to normal state is:					

- (i) Entropy
- (ii) Thermal conductivity
- (iii) Volume
- (iv) Specific heat.

(i) Soft superconductors observe:

- (i) Meissner effect
- (ii) Silsbee's rule
- (iii) Both (i) and (ii)
- (iv) None of the above.
- (j) In nanotechnology, chemical vapour deposition is a technique for the:
 - (i) characterization of nanoparticles
 - (ii) synthesis of carbon nanotubes
 - (iii) determination of the size of nanoparticles
 - (iv) identification of nanoparticles.

Section- B

- 2. Attempt any *three* parts of the following: $5 \times 3 = 15$
 - (a) Calculate the kinetic energy of an electron if its de-Broglie wavelength equals the wavelength of sodium light (5893Å).
 - (b) An electron has a speed of 40 m/s accurate up to 99.99%. What is the uncertainty in locating its position.
 - of permeability 100 is placed inside a long solenoid wound with 300 turns/meter. If a current of 0.5 ampere is passed through the solenoid, find the magnetic moment of the rod.
 - (d) A quartz crystal of thickness 0.005 m is vibrating in resonant condition. Calculate the fundamental frequency. The Young's modulus and the density of quartz are 7.9×10¹⁰ Newton/m² and 2650 kg/m³ respectively.

(e) If the upper atmospheric layer of earth receives 1.38 kWm⁻² energy from the sun, what will be the peak values of electric and magnetic fields at the layer?

Section-C

Attempt all questions of this Section. All questions carry equal marks.

- 3. Attempt any *one* part of the following: $5 \times 1 = 5$
 - (a) What do you understand by phase and group velocities? Establish a relation between them
 - (b) Explain Heisenberg's uncertainty principle and discuss one application of this principle.
- 4. Attempt any *one* part of the following: $5 \times 1=5$

adams of the seasons when

(a) Derive time independent Schrödinger wave equation for a particle. What happens if the particle is free?

9611

- (b) What do you mean by Compton effect? Derive an expression for the Compton shift.
- 5. Attempt any *one* part of the following: $5 \times 1=5$
 - (a) Derive Clausius-Mossotti equation for nonpolar dielectrics.
 - (b) What is hysteresis loss? How this loss is explained by hysteresis curve?
 - 6. Attempt any one part of the following: $5 \times 1=5$
 - (a) What was inconsistency in Amperes law before

 Maxwell and how Maxwell makes it

 consistent? Also explain the role of

 displacement current.
 - (b) Write down the Maxwell equations in conducting medium and use these equations to derive differential equations for electric and magnetic fields in this case.

- 7. Attempt any *one* part of the following: $5 \times 1 = 5$
 - (a) What are superconductors? How does superconducting transition temperature vary with magnetic field?
 - (b) What are carbon nanotubes? Give some important properties and uses of carbon nanotubes.

Physical constants:

Speed of light $c = 3.0 \times 10^8 \,\text{m/s}$

Planck's constant $h=6.62\times10^{-34} \text{ J-s}$

Mass of electron $m=9.1\times10^{-31} \text{kg}$

Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

Permittivity of free space $\epsilon_0 = 8.854 \times 10^{-12} \text{ F/M}.$