Printed Pages: 8

Following Paper ID and Roll No. to be filled in your Answer Book)						
PAPER ID: 3302	Roll No.	H bri	file.	17		

B. Tech.

(Second Semester) Theory Examination, 2010-11 ELECTRONICS ENGINEERING

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions.

- L Attempt each of the following parts: 2×10=20
 - (a) If V_m is peak voltage across secondary of a transformer in a bridge full wave rectifier, then peak inverse voltage is given by:
 - (i) $V_{\rm m}$
 - (ii) $V_{\rm m}/2$
 - (iii) $2V_{\rm m}$
 - (iv) None of them.
 - (b) The Avalanche breakdown in semiconductor diode occurs when:
 - (i) Forward current exceeds a certain value
 - (ii) Reverse bias exceeds a certain value
 - (iii) Forward bias exceeds a certain value
 - (iv) The potential barrier is reached to zero.

- (c) A transistor is operating in active region, under this condition:
 - (i) both the junctions are forward bias
 - (ii) both the junctions are reverse bias
 - (iii) Emitter base junction is reverse bias collector base junction is forward bias
 - (iv) Emitter base junction is forward bias collector base junction is reverse bias.
 - (d) An amplifier circuit of voltage gain 100, 2V output voltage the input voltage applied is
 - (e) In enhancement n-channel MOSFET an induces n type channel can be produced between the source and drain if V_{gs} is negative. (True/False)
 - (f) Inverting amplifier gain is independent of source resistance. (True/False)
 - (g) The output voltage in OPAMP differentiator with input voltage V_i the output voltage is given by when R = 1K and C = 1 pf.

- (h) $(CA95.12)_{16} (9FE.A)_{16} = \dots$
- (i) $A'B'C' + A'B'C + A'BC' + ABC' = \dots$
- (j) The sweep voltage is applied on the axis of CRO.
- 2. Attempt any four parts:

- $5 \times 4 = 20$
- (a) Draw the circuit diagram of full wave bridge rectifier and explain the operation and also draw the input and output waveform.
- (b) Determine the currents I_1 , I_2 and I_{D_2} for the network shown below (Fig. 1):

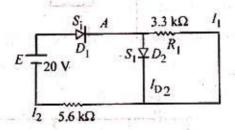


Fig. 1

(c) For the Zener diode network of the Fig. 2, determine V_L, V_R, I_Z and P_Z. rectifie

Answ

N, 208

rry equ

ue-false

3302 (3)

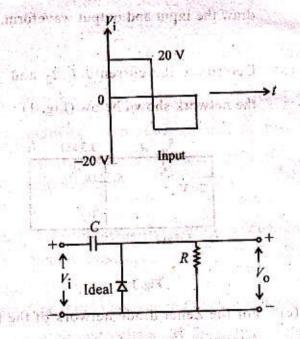
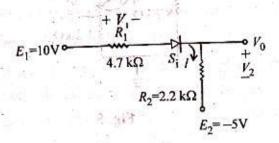

(1.) FOO IIE

Fig. 2 () to disc.


Legenda, the Carlo

(d) Sketch V_0 for the network of Fig. 3 for the input shown:

gramma Fig. 3 milestable

- Draw the voltage Tripler circuit and explain (e) the operation.
- Determine I, V_1, V_2 and V_0 for the series of (f) de configuration in Fig. 4.

said bustime. Fig. 4, no set yell

Attempt any two parts

- 10×2=20
- Draw the input and output characteristics (a) (v-i) of a CE npn transistor configuration with proper levels and discuss how you will determine he and he hybrid parameters from these characteristics.

C 022-710

For the voltage-divider bias configuration (b) of Fig. 5 determine (i) I_C (ii) V_E (iii) V_{CC} (iv) V_{CE} (v) V_{B} (vi) R_{1} .

rectifie

Answ

DN, 208

rry equ

ue-false

(5) 3302

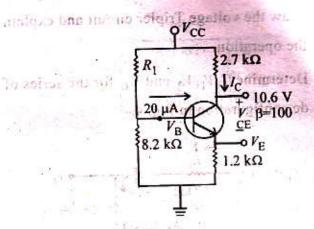


Fig. 5

(c) For the emitter-stabilized bias circuit of Fig. 6, determine (i) I_{B2} (ii) I_{C2} (iii) V_{CE2}
 (iv) V_C (v) V_B (vi) V_E.

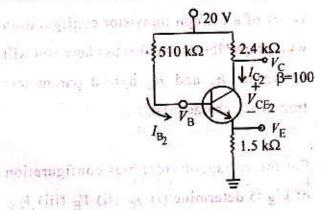


Fig. 6

- (a) What is the significant difference between the construction of an enhancement-type MOSFET and depletion-type MOSFET? Sketch the basic construction of a p-channel depletion-type MOSFET.
- (b) Draw a neat schematic diagram of a cathode ray tube with proper labels. How is the intensity of the spot/trace controlled in a cathode ray oscilloscope?
- (c) (i) Sketch a three-input inverting summing circuit and derive an expression for the output voltage.
 - (ii) Design a non-inverting amplifier circuit that is capable of providing a voltage gain of 15. Assume ideal op-amp and resistances used should not exceed $30 \text{ k}\Omega$.
- Attempt any four parts :

 $5 \times 4 = 20$

- (a) Simplify the following function by using the Boolean algebra:
 - (i) $A\overline{B}\overline{C}D + \overline{A}\overline{B}D + BC\overline{D} + \overline{A}B + B\overline{C}$

r Answe

ON, 200

arry equ

e rectifie

3302

(7)

(ii)
$$(AB + \overline{AC} + BC)(A + \overline{B} + A\overline{B})$$
.

- (b) Perform the following binary arithmetic operations:
 - (i) (1101.1101)₂ -(1001.10)₂

ted same distantantings :

- (ii) $(AB9.54)_{16} + (39C.CD)_{16}$.
- (c) Simplify the function using K-map:

$$f(A, B, C, D) =$$

 $\Sigma m(3, 4, 5, 7, 9, 13, 14, 15) + \Sigma d(0, 1, 8, 10)$
Implement the output using gates.

(d) (i) Convert the given expression into canonical SOP form:

$$f = A + AB + ABC .$$

(ii) Convert the given expression into canonical POS form:

$$f = (A+B)(B+C)+(C+A)$$
.

- (e) What is the universal gate? Name the universal gate? Give the proof of universal gate at least for one type of gate.
- (f) Draw the block diagram of digital multimeter. Explain the operation of each block.