(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 9929

B. Tech.

(SEM. II) THEORY EXAMINATION 2010-11 MATHEMATICS-II

Time : 3 Hours
Total Marks : 100
Note : Attempt all questions. All questions carry equal marks.

1. Attempt any four parts of the following :
(a) Solve the equation $x \frac{d y}{d x}-\frac{1}{2} y=x+1$ and prove that the only solution for which x and y can attain the value unity is given by $\mathrm{y}=2 \mathrm{x}+\sqrt{\mathrm{x}}-2$.
(b) Solve $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-6 y=\sin 3 x+\cos 2 x$.
(c) Solve $(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}=(2 x+3)(2 x+4)$.
(d) Solve the simultaneous equations:

$$
\begin{aligned}
& \frac{d x}{d t}-y=e^{t}, \frac{d y}{d t}+x=\sin t \\
& \text { given } x(0)=1, y(0)=0
\end{aligned}
$$

(e) Solve the following differential equation by reducing into normal form

$$
\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left(x^{2}+2\right) y=e^{\frac{1}{2}\left(x^{2}+2 x\right)}
$$

(f) An RL circuit has an e.m.f. given (in volts) by $4 \sin t$, a resistance of 100 ohms, an inductance of 4 henry and no initial current. Find the current at any time t.
2. Attempt any two parts of the following :
(a) Using Frobenius method, obtain a series solution about $x=0$ for the differential equation :

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
$$

(b) (i) Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1}, m=n$.
(ii) Prove that $n P_{n}(x)=x P_{n^{\prime}}(x)-P_{n-1}(x)$.
(c) (i) Prove that $J_{5 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left[\left(\frac{3-x^{2}}{x^{2}}\right) \sin x-\frac{3 \cos x}{x}\right]$
(ii) Prove that $J_{n}{ }^{\prime \prime}(x)=\frac{1}{4}\left[J_{n-2}(x)-2 J_{n}(x)+J_{n+2}(x)\right]$.
3. Attempt any four parts of the following :
$(5 \times 4=20)$
(a) State first shifting property for Laplace transform. Hence find the Laplace Transform of

$$
f(t)=t^{2} e^{t} \sin 4 t
$$

(b) Use Laplace transform to evaluate :

$$
\int_{0}^{x} e^{-t} \frac{\sin ^{2} t}{t} d t
$$

(c) Express the following functions in terms of unit step function and hence find its Laplace transform :

$$
f(t)=\left\{\begin{array}{cl}
\sin t, & 0<t<\pi \\
\sin 2 t, & \pi<t
\end{array}\right.
$$

(d) Find the function whose Laplace transform is:

$$
\mathrm{F}(\mathrm{~s})=\frac{\mathrm{s}-1}{\mathrm{~s}^{2}(\mathrm{~s}-7)}
$$

(e) Solve the following integral equation:

$$
y(t)=1-\sinh t+\int_{0}^{t}(1+u) y(t-u) d u
$$

(f) Using Laplace transform, solve :

$$
\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+9 \mathrm{x}=\sin 2 \mathrm{t}, \mathrm{x}(0)=1, \quad \mathrm{x}^{\prime}(0)=0
$$

4. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) Find the Fourier series of the periodic function $f(x)$ with period 2π defined as follows :

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
0, & -\pi<\mathrm{x} \leq 0 \\
\mathrm{x}, & 0 \leq \mathrm{x} \leq \pi
\end{array} .\right.
$$

Hence prove that $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$
(b) Given the function $f(x)=x, 0<x<1$, find:
(i) Fourier cosine series for $f^{\prime}(x)$,
(ii) Fourier sine series for $f(x)$.
(c) Solve $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}-3 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=x y+e^{x+2 y}$.
5. Attempt any two parts of the following :
$(10 \times 2=20)$
(a) Use the method of separation of variables to obtain the general solution of
$\Leftrightarrow c^{2} \frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial u}{\partial t}$ that tends to zero as $t \rightarrow \infty$ for all x .
(b) Find the steady state temperature distribution in a semicircular plate of radius a, insulated on both faces with its curved boundary kept at a constant temperature U_{0} and its bounding diameter is kept at zero temperature.
(c) A string is stretched and fastened to two points distance L - apart. Find the displacement of the string at any point x and at any time t if the motion is started by displacing the string in the form $y=a \sin ^{3} \frac{\pi x}{L}$ from which it is released at time $\mathrm{t}=0$.

