(Following Paper ID	and Roll No	. to be	filled	in y	our A	nswe	r Book)
PAPER ID: 3034	Roll No.	T	TT	Ť			T
						- 02	

B. Tech.

(SEM. II) THEORY EXAMINATION 2010-11 ELECTRONICS ENGINEERING

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all questions.

- (2) Be precise in your answer. No second answer book will be provided.
- Attempt any four parts of the following :

 $(5 \times 4 = 20)$

- (a) On the basis of Energy band diagram explain Insulator, Metals and Semiconductors.
- (b) Explain Static and Dynamic Resistance of diode.
- (c) Describe the characteristics of ideal diode. Determine the on and off state of the device.
- (d) Define the terms conductivity, intrinsic concentration and energy gap of semiconductors.
- (e) Determine the voltage V₀ and I for the given configuration:

- (f) Differentiate between:
 - (i) Donor and Acceptor impurities
 - (ii) Intrinsic and Extrinsic semiconductors.
- 2. Attempt any two parts of the following: (10×2=20)
 - (a) Draw circuit diagrams to show two methods of producing a negative output voltage from a half wave rectifier. Explain briefly the circuit operations.
 - (b) (i) Explain the working of full-wave bridge rectifier and show that $PIV \ge V_{-}$.
 - (ii) What is clipper circuit? Sketch the output voltage waveform for the circuit shown:

- (c) (i) Discuss the different types of junction break-down that can occur in a reverse biased diode. Explain the shape of the break-down diode characteristics. What will be their thermal coefficient?
 - (ii) Draw and explain the circuit operation of voltage Tripler circuit.

- Attempt any two parts of the following: (10×2=20)
 - (a) (i) How must the two transistor junction be biased for proper transistor amplifier operation? What is the source of leakage current in a transistor?
 - Draw the output characteristics of a transistor in C_E
 configuration. Also indicate all the region of operation.
 - (b) Draw and describe the h-parameter equivalent circuit for a common emitter transistor amplifier. Show how the values of h-parameters are obtained from the common emitter input characteristic curves and common emitter output characteristic curves.
 - (c) (i) Draw the small signal equivalent circuit of a BJT and explain each component.
 - (ii) Sketch a emitter bias circuit using an npn transistor. Show all voltage polarities and current directions. Explain the operation of the circuit and write the equations for V_B, I_E, I_C and V_{CE}.
 - 4. Attempt any two parts of the following: (10×2=20)
 - (a) Sketch the structure of a p-type channel depletion type MOSFET and explain its principle of operation with neat diagrams. Also sketch its V-I characteristics and circuit symbols for it.
 - (b) Describe the construction and operation of a JFET. How does it differ from a MOSFET? Draw the equivalent circuit for a JFET amplifier and explain its biasing.

- (c) (i) Define pinch-off voltage and its significance. Also mention the parameters that control the pinch-off voltage of a JFET.
 - (ii) In a JFET the drain current is changed by 0.25 mA when the gate-source voltage is changed by 0.125V, keeping drain source voltage constant. Calculate the transconductance of the given JFET.
- Attempt any two parts of the following: (10×2=20)
 - (a) What is Karnaugh map? Explain how it helps in simplifying a given Boolean expression. Draw K-map for four-number of variables. Minimise the given Boolean function using K-map. F(w,x,y,z) = Σ m(1,0,4,7,9,11) + d(2,3,8,12).
 - (b) (i) Convert the following numbers as indicated: $(1221.12)_2 = ()_7, (1221.12)_{10} = ()_{16}.$
 - (ii) Implement XNOR gate using universal gates.
 - (c) (i) Express F = AB + A'C in Sum of the Products and also in Product of the Sums form.
 - (ii) What are the characteristics of an ideal operational amplifier? Explain the working of an inverting amplifier with neat sketch.