Printed Pages: 4

EEC201/ECE201

(Following Paper ID and Roll No. to be filled in your Answer Book)	
PAPER ID: 3302	Roll No.

B.Tech.

(SEMESTER-II) THEORY EXAMINATION, 2011-12 ELECTRONICS ENGINEERING

Time: 3 Hours]

[Total Marks: 100

Note: Answer all the Sections.

Section - A

1. Attempt all parts of this question:

 $10\times 2=20$

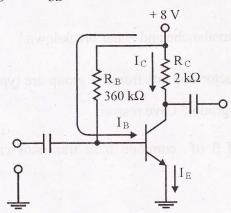
- (a) Distinguish between avalanche and zener breakdown.
- (b) For p type semiconductor dopants from 3rd group are typically employed. Can we use dopants from 2nd group? Give reason.
- (c) Determine $I_E,~\alpha$ and β of common base transistor circuit given I_C = 7 mA, $I_B = 0.1~mA.$
- (d) The thickness of base is typically smaller than emitter and base. Why?
- (e) What is the basic difference between JFET and MOSFET?
- (f) What do you mean by term slew rate in opamp?
- (g) Convert 120₁₀ to equivalent hexadecimal.
- (h) What do you mean by canonical form of a Boolean expression?
- (i) How is voltage measured using CRO?
- (j) Describe input characteristics of a digital voltmeter.

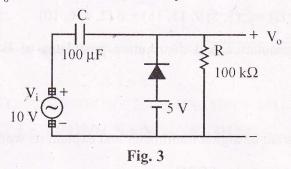
2. Attempt any three parts of this question :

 $3 \times 10 = 30$

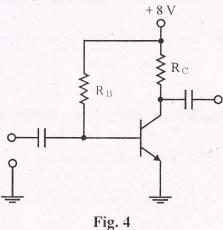
- (a) (i) Explain the formation of potential barrier across a p-n junction.
 - (ii) Explain the function of the circuit of Fig. 1 and draw the output waveform.

- (b) (i) What is base width modulation? How it affects the output characteristics of a transistor in CB and CE configuration?
 - (ii) The transistor in Fig. 2 has values of $h_{FE} = 100$. Determine the Q-point values of I_C and V_{CE} at both of these temperatures.




Fig. 2

- (c) (i) Describe different biasing schemes used in JFET amplifiers. State their advantages.
 - (ii) Given $I_{DSS} = 9$ mA and $V_p = -3.5$ V, determine I_D when $V_{GS} = 0$ V and $V_{GS} = -2$ V.
- (d) (i) Represent the unsigned numbers 84 and 56 in BCD and then show the steps necessary to form their sum.
 - (ii) Express $(10110.0101)_2$ in decimal.
- (e) (i) Explain how would you measure phase of signal from CRO.
 - (ii) Describe the operating of CRO with neat block diagram.


Attempt any two parts of each question:

 $5 \times 10 = 50$

3. (a) Determine V_0 for the network for the input indicated.

- (b) Explain the working of centre tap full wave rectifier. What is the value of peak inverse voltage?
- (c) Discuss the application of zener diode as shunt regulator.
- 4. (a) Draw hybrid equivalent of CE configuration and obtain expressions for $A_{\rm I}$ and $A_{\rm V}$.
 - (b) Why is transistor biasing required? Describe different schemes of transistor biasing in CE n-p-n transistor circuit. State their advantages.
 - (c) Determine R_i and R_o for the circuit of Fig. 4. Use the following parameters : $h_{fe} = 110, h_{ie} = 1.6 \text{ k}\Omega, h_{re} = 0.0002 \text{ and } h_{oe} = 20 \text{ }\mu\text{A/V}, R_C = 4.7 \text{ k}\Omega, R_B = 470 \text{ k}\Omega.$

- 5. (a) Explain the construction of depletion type NMOSFET and explain its output characteristics.
 - (b) Draw the circuit diagram of an integrator using opamp and explain its working.
 - (c) Describe ideal and practical opamp parameters.

- 6. (a) Implement an OR gate using NAND gates.
 - (b) Simplify the following function with help of K map:

$$F(A, B, C, D) = \Sigma(3, 5, 9, 11, 15) + d(2, 4, 6, 10)$$

- (c) Discuss the commutative and distributive postulates of Boolean algebra with example.
- 7. (a) Draw block diagram of digital multimeter and explain its working.
 - (b) Discuss different controls of CRO.
 - (c) What is function of time base circuit in CRO? How will you measure the frequency of sinusoidal signal with help of CRO?