(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 9610

Roll No.

B.Tech.

(SEMESTER-II) THEORY EXAMINATION, 2011-12

MATHEMATICS - II

Time : 3 Hours]
[Total Marks : 100

Note: Attempt questions from each Section as indicated. The symbols have their usual meaning.

$$
\text { Section }-\mathbf{A}
$$

1. Attempt all parts of this question. Each part carries $\mathbf{2}$ marks.

$$
10 \times 2=20
$$

(a) Prove that if M and N in
$\mathrm{M}(x, \mathrm{y}) \mathrm{d} x+\mathrm{N}(x, y) \mathrm{d} y=0$
Satisfy the equation
$\frac{\partial M}{\partial y}+\frac{3}{y} M=\frac{\partial N}{\partial x}$,
then y^{3} is an integrating factor.
(b) $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{x}$ is the solution of the differential equation $\ldots \ldots ., c_{1}, c_{2}, c_{3}$ are constants.
(c) Classify the singular points of the differential equation
$x^{2} \frac{\mathrm{~d}^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0$,
a and b are constants.
(d) Show that $\sum_{\mathrm{n}=0}^{\infty} \mathrm{P}_{\mathrm{n}}(x)=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{1-x}}$.
(e) State the conditions for the existence of Laplace Transform.
(f) State Convolution Theorem.
(g) State Direichlet conditions for the expansion of $\mathrm{f}(x)$ in Fourier series.
(h) Classify the partial differential equation
$\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(i) Explain briefly the method of separation of variables in solving a given partial differential equation.
(j) The two-dimensional wave equation is \qquad .

Section - B

Attempt any three parts of this question. Each part carries equal marks.
2. (a) An R-L-C circuit connected in series has $\mathrm{R}=90$ Ohms, $\mathrm{C}=\frac{1}{140}$ farad, $\mathrm{L}=10$ henries and an applied voltage $\mathrm{E}(\mathrm{t})=10 \cos \mathrm{t}$. Assuming no initial charge on the capacitor, but an initial current of 1 ampere at $=0$, when the voltage is first applied, find the subsequent charge on the capacitor and the amplitude of the steady-state charge,
(b) Find the series solution, about $x=0$, of the equation $x \frac{\mathrm{~d}^{2} y}{d x^{2}}+\frac{\mathrm{dy}}{\mathrm{d} x}-x y=0$, by the Frobenius method.
(c) Using convolution, solve the initial value problem
$\frac{d^{2} y}{d t^{2}}+9 y=\sin 3 t$
given $\mathrm{y}=0, \frac{\mathrm{dy}}{\mathrm{dt}}=0$ at $\mathrm{t}=0$.
(d) Find the Fourier series representation upto second harmonics of $\mathrm{f}(x)$ which is given in the following table :

\boldsymbol{x}	0	1	2	3	4	5
$\mathbf{f}(\boldsymbol{x})$	9	18	24	28	26	20

(e) Solve the boundary value problem

$$
\frac{\partial z}{\partial x}+\frac{\partial^{2} z}{\partial y^{2}}=0
$$

satisfying the conditions $z(x, 0)=0, z(x, \pi)=0, z(0, y)=4 \sin 3 y$.

Section-C

Attempt any two parts from each question of this Section. Each part carries equal marks.
$5 \times 10=50$
3. (a) If $(x+y)^{n}$ is an integrating factor of $\left(4 x^{2}+2 x y+6 y\right) \mathrm{d} x+\left(2 x^{2}+9 y+3 x\right) \mathrm{dy}=0$, find n and then solve the equation.
(b) Solve : $\left(D^{2}-3 D+2\right) y=\sin \left(e^{-x}\right)$
(c) Solve : $\left(\frac{\mathrm{d}}{\mathrm{d} x}+\frac{1}{x}\right)^{2} y=x^{-4}$.
4. (a) Prove that $(\mathrm{n}+1) \mathrm{P}_{\mathrm{n}+1}(x)=(2 \mathrm{n}+1) x \mathrm{P}_{\mathrm{n}}(x)-\mathrm{nP}_{\mathrm{n}-1}(x)$.
(b) Show that

$$
\int x \mathrm{~J}_{0}^{2}(x) \mathrm{d} x=\frac{1}{2} x^{2}\left[\mathrm{~J}_{0}^{2}(x)+\mathrm{J}_{1}^{2}(x)\right]+\mathrm{c}
$$

(c) Show that

$$
\mathrm{J}_{3}(x)=\left(\frac{8}{x^{2}}-1\right) \mathrm{J}_{1}(x)-\frac{4}{x} \mathrm{~J}_{0}(x)
$$

5. (a) State second shifting theorem for Laplace transform and hence find the Laplace transform of the following function:
$f(t)=\left\{\begin{array}{l}e^{t-a}, t>a \\ 0, \\ 0, t<a\end{array}\right.$
(b) Find the inverse Laplace transform of $\frac{s}{\left(s^{2}+a^{2}\right)^{3}}$.
(c) Show that

$$
\int_{0}^{\infty} \frac{\cos 6 t-\cos 4 t}{t} d t=\log \frac{2}{3}
$$

6. (a) Find the Fourier series of $\mathrm{f}(x)=\frac{3 x^{2}-6 \pi x+2 \pi^{2}}{12}$ in the interval $(0,2 \pi)$. Hence, deduce that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$.
(b) Find the half-range sine series of $\mathrm{f}(x)=\left(l x-x^{2}\right)$ in the interval $(0, l)$. Hence, deduce that
$\frac{\pi^{3}}{32}=1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots$.
(c) Solve : $\left(\mathrm{D}^{2}+\mathrm{DD}^{\prime}-6 \mathrm{D}^{\prime 2}\right) \mathrm{z}=\mathrm{y} \sin x$
7. (a) Solve : $\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}$,
α constant, subject to the boundary conditions $u(0, t)=0, u(\pi, t)=0$ and the initial condition $\mathrm{u}(x, 0)=\sin 2 x$.
(b) Find the deflection of the vibrating string which is fixed at the ends $x=0$ and $x=2$ and the motion is started by displacing the string into the form $\sin ^{3}\left(\frac{\pi x}{2}\right)$ and releasing it with zero initial velocity at $t=0$.
(c) Determine the electromotive force $\mathrm{e}(x, \mathrm{t})$ in a transmission line of length b, t seconds after the ends were suddenly grounded. Assume that R and G are negligible and the initial conditions are $\mathrm{i}(x, 0)=\mathrm{i}_{0}$ and $\mathrm{e}(x, 0)=\mathrm{e}_{1} \sin \frac{\pi x}{\mathrm{~b}}+\mathrm{e}_{5}$ $\sin \frac{5 \pi x}{\mathrm{~b}}$. Here G and R denote the terms for the effect of leakage and resistance respectively.
