(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 1230

Roll No.

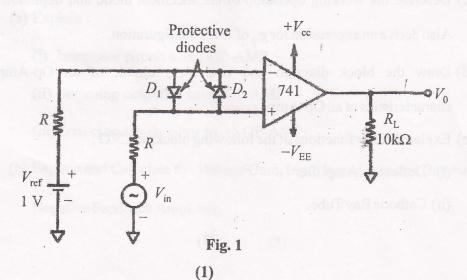
B. Tech.

(Semester-II) Even Semester Theory Examination, 2012-13

ELECTRONICS ENGINEERING

Time: 3 Hours]

[Total Marks: 100


Note: Attempt questions from each Section as per instructions.

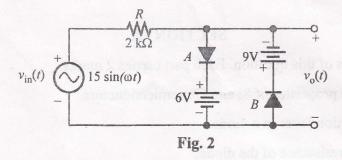
SECTION - A

Attempt all parts of this question. Each part carries 2 marks.

 $2 \times 10 = 20$

- 1. (a) Compare the properties of Si and Ge semiconductors.
 - (b) Define depletion layer in a diode.
 - (c) Define bulk resistance of the diode.
 - (d) Draw the double ended diode clipper circuit.
 - (e) Draw the output waveform appear across R_L for the Fig. 1.

- (f) A constant voltage source with 10 V and series internal resistance of 100 ohm.


 Calculate its equivalent current source.
- (g) Define Ohmic region in FET.
- (h) If α of a transistor changes from 0.981 to 0.987, find the percentage change in β ?
- (i) Why triggering circuit is needed in CRO?
- (j) List the four specifications of unregulated power supply.

SECTION-B

Attempt any three parts of this question. Each part carries 10 marks.

10×3=30

- 2. (a) (i) For a half wave rectifier derive an expression for ripple factor.
 - (ii) Explain the function of the circuit of Fig. 2 and draw the output waveform.

- (b) Draw the CE configuration circuit of BJT and explain its input and output characteristics.
- (c) Describe the working operation of enhancement mode and depletion mode MOSFET. Also derive an expression for g_m of JFET configuration.
- (d) Draw the block diagram and equivalent circuit of an Op-Amp. Explain ideal characteristics of an Op-Amp.
- (e) Explain briefly functions of the following blocks in CRO:
 - (i) Deflection Amplifier
 - (ii) Cathode Ray Tube.

SECTION-C

	Attempt <i>all</i> questions of this Section. Each question carries 10 marks. $10 \times 5 = 50$
3.	Explain input and output characteristics of any two of the following:
	(a) Schottky Diode
	(b) Zener Diode
	(c) Varactor Diode
4.	Attempt any two parts :
	(a) Explain the working of a common base circuit with its circuit diagram.
	(b) What is a well-designed voltage divider biasing (VDB) circuit? Explain.
	(c) Explain, how the input impedance of an amplifier can load down the a.c. source.
5.	Attempt any two parts :
	(a) Explain the transconductance curve of a JFET.
	(b) Draw the schematic of Self-Biasing JFET amplifier.
	(c) Explain the CMOS inverter circuit working operation.
6.	Attempt any one part :
	(a) Explain:
	(i) Integrator circuit using OP-AMP.
	(ii) Summing amplifier using OP-AMP
	(iii)Zero crossing detector using OP-AMP.
	(b) Explain and Calculate the Voltage Gain, Input Impedance and Bandwidth for an Inverting

Negative Feedback Amplifier.

- 7. Attempt any two parts:
 - (a) Explain the characteristics of Digital Voltmeter Systems.
 - (b) Explain all Oscilloscope Controls with one example.
 - (c) How do you measure power supply performance? Explain.