(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 1287

Roll No. \square

B. Tech.

(Semester II) Even Semester Theory Examination, 2012-13

ENGINEERING MECHANICS

Time: 3 Hours]

[Total Marks: 100
Note: Attempt questions from all Sections as per instructions.

Section-A

Attempt all parts of this question. Each part carries 2 marks.

1. (a) State the principle of transmissibility of forces.
(b) Write the general conditions for equilibrium of a particle.
(c) State Varignon's theorem.
(d) List any four engineering applications of friction.
(e) Define centre of gravity and centroid.
(f) State parallel axis theorem.
(g) A body is moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$. After 5 seconds the velocity of the body becomes $10 \mathrm{~m} / \mathrm{s}$. Find the acceleration of the body.
(h) Write the general equations for curvilinear motion.
(i) State D'Alemberts principle.
(j) State the principle of virtual work.

Section-B

Attempt any three parts of this question. Each part carries 10 marks. $10 \times 3=30$
2. (a) (i) Two concurrent forces of 12 N and 18 N are acting at an angle of 60°. Find the resultant force.
(ii) Three coplanar concurrent forces are acting at a point as shown in Fig. 1. Determine the resultant in magnitude and direction.

Fig. 1
P. T. O.
(b) A beam $A B$ of span 10 m 4 loaded as shown in Fig. 2. Determine the reactions at A and B.

(c) Locate the centroid of the lamina shown in Fig. 3.

Fig. 3
(d) A car starts from rest and uniformly accelerated to speed of 20 km per hour over a distance of 200 m . Calculate the acceleration and time taken. If further acceleration raises the speed to 50 km per hour in 8 seconds, find the acceleration and the further distance moved.
(e) Fig. 4 shows a body of weight 300 N on a smooth horizontal plane is attached by a string to a 30 N weight, which hangs vertically. Find the acceleration of the system and the tension in the string.

Fig. 4
Section-C
Attempt all questions of this Section. Each question carries 10 marks. $10 \times 5=50$ 3. Attempt any one part :
(a) An electric light fixture weighing 150 N hangs from a point C, by two strings $A C$ and $B C$ as shown in Fig. 5. Determine the forces in the strings $A C$ and $B C$.

Fig. 5
(b) A smooth sphere of weight W is supported by a string fastened to a point A on the smooth vertical wall, the other end is in contact with point B on the wall as shown in Fig. If the length of the string $A C$ is equal to the radius of the sphere, find the tension in the string and reaction of the wall.

Fig. 6
4. Attempt any one part :
(a) Block 2 rests on block 1 and is attached by horizontal rope $A B$ on the wall as shown in Fig. 7. What force P is necessary to cause motion of the block 1 to impend? The coefficient of friction between the blocks is $1 / 4$ and between the floor and block 1 is $1 / 3$. Mass of the blocks 1 and 2 are 14 kg and 9 kg respectively.

Fig. 7
(b) Determine the magnitude and nature of forces in all members of the truss shown in Fig.:

Fig. 8
5. Attempt any one part :
(a) Find the moment of inertia of I-section shown in Fig. 9, about its centroidal axes.

Fig. 9
(b) Calculate the mass moment of inertia of the body shown in Fig. 10, with respect to vertical geometrical axis. Assume density of cone and cylinder are $6500 \mathrm{Kg} / \mathrm{m}^{3}$ and $7850 \mathrm{~kg} / \mathrm{m}^{3}$ respectively.

Fig. 10
6. Attempt any one part :
(a) A particle moves along a straight line with variable acceleration. If the displacement is measured in m and given by relations in terms of time taken t, $S=3 t^{3}+2 t^{2}+7 t+3$.
Determine :
(i) the velocity of the particle at start and after 3 seconds.
(ii) the acceleration of the particle at start and after 3 seconds.
(b) A bar $A B$ of length 1.2 m slides in $x y$ plane as shown in Fig. 11 the velocity of the point A is $5 \mathrm{~m} / \mathrm{s}$ towards right. Determine :
(i) the angular velocity of the bar
(ii) the velocity of the end B and
(iii) the velocity of the midpoint of the bar at the instant when the axis of the bar makes an apgle of 30° with the horizontal.

Fig. 11
7. Attempt any one part :
(a) A block of mass 10 kg rests on a horizontal plane as shown in Fig. 12. Find the magnitude of the force P, required to move the block at an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ towards right. Take the coefficient of friction between the block and the plane is 0.25 .

Fig. 12
(b) A train moving at $40 \mathrm{~km} / \mathrm{hour}$ is hit by a stone thrown at right angles to it with a velocity of $12 \mathrm{~km} / \mathrm{hr}$. Find the velocity and the direction with which the stone hit a person travelling in the train.

