(Following Paper ID and Roll No. to be filled in your Answer Book)

B. Tech.

(Semester-II) Even Semester Theory Examination, 2012-13

ENGINEERING MATHEMATICS-II

Time : 3 Hours]
[Total Marks : 100

Note: Attempt questions from each Section as per instructions. The symbols have their usual meaning.

Section-A

Attempt all parts of this question. Each part carries 2 marks.

1. (a) Verify for exactness the differential equation :

$$
y \exp (x y) \cdot d x+[x \exp (x y)+2 y] d y=0
$$

(b) State the criterion for linearly independent solutions of the homogeneous linear nth order differential equation.
(c) Explain ordinary and singular points of a differential equation of the form :

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

(d) Prove that:

$$
J_{0}^{\prime}(x)=-J_{1}(x)
$$

(e) If Laplace transform of $f(t)$ is $F(s)$, then show that Laplace transform of [$\left.e^{a t} f(t)\right]$ is $F(s-a)$, where a is any real number.
(f) Find:

$$
L^{-1}\left[\frac{1}{s^{2}-3 s+3}\right]
$$

(g) Find the partial differential equation which is satisfied by the relation $z=c_{1} x y+c_{2}$, where c_{1} and c_{2} are constants.
(h) Give two examples of non-linear partial differential equation of the first order.
(i) Write telegraph equations.
(j) Characterize the following partial differential equation into elliptic, parabolic and hyperbolic equations :

$$
a \frac{\partial^{2} z}{\partial x^{2}}+2 h \frac{\partial^{2} z}{\partial x \partial y}+b \frac{\partial^{2} z}{\partial y^{2}}+2 f \frac{\partial z}{\partial x}+2 g \frac{\partial z}{\partial y}+c z=f(x, y),
$$

where a, b, c, h, f, g are constants.

Section-B

Attempt any three parts of this question. Each part carries 10 marks. $10 \times 3=30$
2. (a) A light elastic string of length l is hung by one end. To the other end are tied successively particles of masses m_{1} and m_{2} and they produced statical extensions l_{1} and l_{2}. If T_{1} and T_{2} are the periods of small oscillations corresponding to the two masses, show that :

$$
\frac{T_{1}^{2}-T_{2}^{2}}{l_{1}-l_{2}}=\frac{4 \pi^{2}}{g}
$$

(b) Find the series solution of the differential equation $x y^{\prime \prime}+y^{\prime}+x^{2} y=0$.
(c) Find the solution of the differential equation:

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y=e^{t}
$$

with the initial conditions $y(t)=0$ and $\frac{d y}{d t}=1$ when $t=0$ using Laplace transform.
(d) Solve the partial differential equation $\left(p^{2}+q^{2}\right) y=q z$.
(e) Solve the one-dimensional heat equation given that $u(0, t)=0, u(l, t)=0$ and $u(x, 0)=x, 0<x<l$, where l is the length of the bar.

Section-C

Attempt any two parts from each questions of this Section. Each question carries 10 marks.
3. (a) Solve the differential equation:

$$
x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}
$$

(b) Solve by changing the independent variable :

$$
x \frac{d^{2} y}{d x^{2}}+\left(4 x^{2}-1\right) \frac{d y}{d x}+4 x^{3} y=2 x^{3}
$$

(c) Solve the system :

$$
\dot{x}(t)=y, \dot{y}(t)=-x, \quad x(0)=0, y(0)=0 .
$$

4. (a) Prove that:

$$
J_{-n}(x)=(-1)^{n} J_{n}(x)
$$

(b) Prove that:

$$
P_{n}(x)=\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

(c) Prove that:

$$
\int_{-1}^{1} P_{n}^{2}(x) d x=\frac{2}{2 n+1}
$$

5. (a) Using Laplace transform, evaluate $\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} d t$.
(b) Find the inverse Laplace transform of $\cot ^{-1}\left(\frac{s+3}{2}\right)$.
(c) State convolution theorem and hence evaluate $L^{-1}\left\{\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\}$.
6. (a) Obtain Fourier series of the function:

$$
f(x)=\left\{\begin{array}{rc}
x, & -\pi<x<0 \\
-x, & 0<x<\pi
\end{array}\right.
$$

(b) Find the half range cosine series of the function $f(x)=x \sin x, 0<x<\pi$.
(c) Solve $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=\sin x$.
7. (a) Solve by the method of separation of variables :

$$
\begin{array}{r}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u, \\
u(0, y)=0 \text { and } \frac{\partial u}{\partial x}(0, y)=1+e^{-3 y}
\end{array}
$$

P. T. O.
(b) A string is stretched and fastened to two points distance l apart. Find the displacement $y(x, t)$ at any point at a distance x from one end at time t, given that :

$$
y(x, 0)=A \sin \left(\frac{2 \pi x}{l}\right)
$$

(c) Using the transformations $u=x-c t$ and $v=x+c t$, transform the equation:

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

to the form $\frac{\partial^{2} y}{\partial u \partial v}=0$. Hence show that $y(x, t) \stackrel{!}{=} f_{1}(x-c t)+f_{2}(x+c t)$.

