Printed Pages-8

EC201/101

(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 199211 Roll No.

B.Tech.

(SEM. II) THEORY EXAMINATION 2013-14

ELECTRONICS ENGG

Time : 3 Hours

Total Marks : 100

Note :- Attempt all Sections.

SECTION-A

- All parts are compulsory. Write short answers by giving proper reasons.: (2×10=20)
 - (a) Calculate the dynamic forward and reverse resistance of a PN junction diode when the applied voltage is 0.25 V at $T = 300^{\circ}$ K given $I_0 = 2 \mu A$.
 - (b) Distinguish between avalanche and zener mechanisms.
 - (c) Draw the block diagram of unregulated Power Supply.
 - (d) Establish the relationship between I_{CBO} and I_{CEO} .
 - (e) Draw the transfer and output characteristic of Tunnel Diode.
 - (f) Enlist the difference between JFET and MOSFET.
 - (g) An operational Amplifier has a differential gain of 103 and a CMRR of 100, input voltages are 120 μ V and 80 μ V. Determine the output voltage.
 - (h) The BJT circuit has $I_c = 10 \text{ mA}$ and $\alpha = 0.98$. Determine the value of I_F .
 - (i) In JFET $I_{DSS} = 8mA$, $V_p = -4V$ biased at $V_{GS} = -1.8V$. Determine the value g_m .

1

(j) What are Lissajous figure ?

EC201/101/DQJ-21793

SECTION-B

2. Attempt any three parts of the following :

$$(10 \times 3 = 30)$$

- (a) (i) Draw and explain the working of Bridge rectifier with input and output waveforms. Calculate efficiency and ripple factor for the same.
 - (ii) For the network shown in Fig. 1, determine the output voltage.

Figure 1

- (b) (i) With proper circuit diagram, draw the Base curve and collector curves of n-p-n transistor in C-E configuration.
 - (ii) Determine I_{CQ} and V_{CEQ} for the network shown in Fig. 2.

EC201/101/DQJ-21793

2

- (c) (i) With suitable ckt. diagram describe the working of n-channel JFET with drain and transfer curves.
 - (ii) Draw the dc load line and determine V_G , I_{DQ} , V_{GSO} for the network shown in Fig. 3.

Figure 3

- (d) (i) How OP-Amp acts as a differentiator ? Derive its output voltage expression.
 - (ii) Determine the output voltage for the network shown in **Fig. 4**.

Figure 4

EC201/101/DQJ-21793

3

- (e) (i) Write short note on digital multimeter with proper block diagram.
 - (ii) For the given zener diode network shown in Fig. 5 determine V₁, V_R, I_z and I_R.

SECTION-C

Note : Attempt all questions of this section. (10×5=50)

3. Attempt any two parts of the following :

(a) Determine the output voltage for given network in Fig. 6.

Figure 6

4

EC201/101/DQJ-21793

(b) Design a clamper to perform the function indicated in following Fig. 7.

Figure 7

- (c) Explain Schottky diode and varicap with their applications.
- 4. Attempt any two parts of the following :
 - (a) Draw and explain the a.c. equivalent circuit of voltage divider Bias amplifier using re model.
 - (b) Determine the voltage Gain of emitter follower in Fig. 8.

If $\beta = 150$, what is a.c. input voltage ?

Figure 8

EC201/101/DQJ-21793

5

(c) Calculate the voltage Gain of VDB amplifier shown in Fig. 9.

- 5. Attempt any two parts of the following :
 - (a) With proper circuit diagram draw and explain the drain and transfer characteristic curve for N-Channel JFET.

Show that
$$\varepsilon_{\rm m} = \frac{-2}{V_{\rm p}} \sqrt{I_{\rm DSS} I_{\rm DS}}$$

(b) For the network shown in **Fig.10**, calculate V_{g} , V_{gs} , I_{D} , V_{DS} and V_{s} .

EC201/101/DQJ-21793

6

(c) Determine the output voltage of following network shown in

Fig. 11. having $V_{GS(off)} = -2V$, $l_{DSS} = 4mA$ and $g_{mo} = 3000 \ \mu s$

Figure 11

- 6. Attempt any two parts of the following :
 - (a) Define CMRR, Slew Rate and concept of virtual ground in Op-AMP.
 - (b) For the network shown in Fig. 12., determine the output voltage.

7

EC201/101/DQJ-21793