Printed Pages-3

AS202(E)

(Following Paper ID and Roll No. to be filled in your Answer Book)							
PAPER ID : 199202	Roll No.						П

B.Tech.

(SEM. II) THEORY EXAMINATION 2013-14

ENGG. PHYSICS – II

For Electrical and Electronics Groups etc.

Time : 3 Hours

Total Marks : 80

Note :- Attempt questions from each Section as per instructions.

SECTION-A

1. Attempt all parts of this question. Each part carries 2 marks.

 $(2 \times 8 = 16)$

- (a) What are de-Broglie's matter waves ?
- (b) What is the difference between phase velocity and group velocity?
- (c) Explain penetration depth in superconductors.
- (d) What are multi-walled carbon nano tubes?
- (e) What is hysteresis? What does the area of hysteresis curve represent ?
- (f) How dielectric constant depends on frequency?
- (g) Define Hall Effect ? What is the effect of temperature on Hall Coefficient ?
- (h) How splices and connectors are used in optical fibres ?

1

AS202(E)/DQJ-21173

[Turn Over

SECTION-B

- Attempt any three parts of this question. Each part carries
 8 marks. (8×3=24)
 - (a) An electron has de-Broglie wavelength 2.0×10⁻¹²m. Find its kinetic energy. Also find the phase and group velocities of its de-Broglie waves.
 - (b) A superconducting material has a critical temperature of 3.7 K in zero magnetic field of 0.306 Tesla at 0 K. Find the critical field at 2 K.
 - (c) The dielectric constant of helium at 0°C and 1 atmospheric pressure is 1.000074. Find the dipole moment induced in helium atom when the gas is in an electric field of intensity 100 V/m. Number of atoms per unit volume of helium gas are 2.68×10²⁷.
 - (d) In an n-type semiconductor, the Fermi level is 0.3 eV below the conduction band at 300 K. If the temperature is increased at 330 K. Find the new position of Fermi level.
 - (e) Calculate the mean free path of the molecules of a gas in a chamber of 10^{-6} mm of mercury pressure, assuming the molecular diameter to be 2Å. Take the temperature of the chamber to be 273 K and Boltzmann constant k = 1.38×10^{-23} J/K.

SECTION-C

Attempt any one part of all the questions of this Section. Each questions carries 8 marks. (8×5=40)

- 3. (a) What is Heisenberg's uncertainty principle ? State and explain any two applications of the principle.
 - (b) Derive Schrondinger time independent and time dependent equations for matter waves.

AS202(E)/DQJ-21173

2

- 4. (a) What are Type I and Type II superconductors ? Distinguish between the two types of semiconductors.
 - (b) What are buckyballs ? How can the buckyballs be created ? Where are these buckyballs used ?
- 5. (a) Derive Claussius-Mossotti relation in dielectrics subjected to static field.
 - (b) Discuss the Langevin's theory for diamagnetic and paramagnetic materials.
- 6. (a) What do you understand by photovoltaic effect? Describe the working of a solar cell with suitable diagram. Also give applications of solar cells.
 - (b) Discuss the theory of Joule-Thomson expansion. Describe the adiabatic demagnetization.
- 7. (a) Explain the construction and working of pin photodiode and avalanche photodiode with neat diagrams.
 - (b) Explain the generation of high pressure using hydraulic system and using diamond anvil system.

Physical Constants :

Mass of electron	$m_e = 9.1 \times 10^{-31} \text{ kg}$
Speed of Light	$c = 3 \times 10^8 \text{ m/s}$
Planck's constant	$h = 6.63 \times 10^{-34} J_{-S}$
Mass of Proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$
Permittivity of free space	$\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$
Avogadro's number	$N = 6.023 \times 10^{23}$ per mole

AS202(E)/DQJ-21173

3

19725