(Following Paper ID and Roll No. to be filled in your Answer Book)
\square PAPER ID : 199201 Roll No.

B.Tech.

(SEM.II) THEORY EXAMINATION 2013-14

MATHEMATICS-II

Time : 3 Hours
Total Marks : 100
Note :- Attempt all Sections.

1. Attempt all parts of this question. Each part carries 2 marks.
($10 \times 2=20$)

SECTION-A

(a) Find the general solution of $(2 \mathrm{D}+1)^{2} \mathrm{y}=0$.
(b) Form a differential equation if its general solution is $y=A e^{x}+\mathrm{Be}^{-x}$.
(c) If $\mathrm{L}\{\mathrm{F}(\mathrm{t})\}=\frac{\mathrm{e}^{-1 / \mathrm{s}}}{\mathrm{s}}$, find the $\mathrm{L}\left\{\mathrm{e}^{-\mathrm{t}} \mathrm{F}(3 \mathrm{t})\right\}$.
(d) Find Laplace transform of $\sin 2 t u(t-\pi)$.
(e) Express $2 x^{2}+x+3$ in terms of Legendre polynomials.
(f) If $J_{1 / 2}(x)=\sqrt{\frac{m}{\pi x}}$ sinkx, then find m and k.
(g) If $F(x)=\left\{\begin{array}{cc}-x, & -\pi<x<0 \\ x & 0<x<\pi\end{array}\right.$ find $F(0)$.
(h) Solve $\left(D^{2}+D D^{\prime}\right) z=0$.
(i) Classify the following partial differential equation $\left(\mathrm{f}_{\mathrm{xx}}+2 \mathrm{f}_{\mathrm{xy}}+4 \mathrm{f}_{v y}\right)=0$.
(j) Write down the telegraph equations.

SECTION-B

Note :- Attempt any three parts of this question. Each part carries equal marks.
2. (a) Solve the following differential equations by the method of variation of parameters
$y_{2}-3 y_{1}+2 y=e^{2 x}+x^{2}$
(b) Solve in series $\left(x+x^{2}+x^{3}\right) \frac{d^{2} y}{d x^{2}}+3 x^{2} \frac{d y}{d x}-2 y=0$.
(c) Solve the equation by Laplace transform
$\left(D^{3}-D^{2}-D+1\right) y=8 t t^{-1} ; y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0$
(d) Obtain Fourier series for the function $f(x)=\left\{\begin{array}{l}1+\frac{2 x}{\pi},-\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi}, 0 \leq x \leq \pi\end{array}\right.$
(e) Find the deflection of the vibrating string of unit length whose end points are fixed if the initial velocity is zero and the initial deflection is given by $u(x, 0)=\left\{\begin{aligned} 1, & 0 \leq x \leq \frac{1}{2} \\ -1, & \frac{1}{2} \leq x \leq 1\end{aligned}\right.$

SECTION-C

Note :- Attempt any two parts from each question of this section. Each part carries equal marks. $(2 \times 5 \times 5=50)$
3. (a) Solve the system of simultaneous differential equations:
$\frac{d x}{d t}=-4(x+y), \frac{d x}{d t}+4 \frac{d y}{d t}=-4 y$ with conditions $\mathrm{x}(0)=1, \mathrm{y}(0)=0$
(b) Solve the differential equation: $\frac{d^{2} y}{d x^{2}}+y=\cosh 2 x+x^{3}$
(c) Solve the differential equation by changing the independent variable:
$x^{6} \frac{d^{2} y}{d x^{2}}+3 x^{5} \frac{d y}{d x}+a^{2} y=\frac{1}{x^{2}}$
4. (a) Solve the differential equation in series: $y^{\prime \prime}+x y^{\prime \prime}+\left(x^{2}+2\right) y=0$
(b) Prove that:

$$
\int_{-1}^{1}\left(x^{2}-1\right) P_{n+1} P_{n}^{\prime} d x=\frac{2 n(n+1)}{(2 n+1)(2 n+3)}
$$

(c) Prove that:
$\mathrm{J}_{4}(\mathrm{x})=\left(\frac{48}{\mathrm{x}^{3}}-\frac{8}{\mathrm{x}}\right) \mathrm{J}_{1}(\mathrm{x})+\left(1-\frac{24}{\mathrm{x}^{2}}\right) \mathrm{J}_{0}(\mathrm{x})$
5. (a) Find the Laplace transform of the following functions:
(i) $t e^{-1} \cosh t$
(ii) $\int_{0}^{t} e^{t} \frac{\sin t}{t} d t$
(b) Find $L^{-1}\left[\log \left(\frac{s^{2}+4 s+5}{s^{2}+2 s+5}\right)\right]$
(c) Use convolution theorem to find $L^{-1}\left[\frac{16}{(s-2)(s+2)^{2}}\right]$.
6. (a) If $f(x)= \begin{cases}x, & 0<x<\frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2}<x<\pi\end{cases}$

Hence show that

$$
f(x)=\frac{4}{\pi}\left[\sin x-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}-\cdots \cdots \cdot .\right]
$$

(b) Solve $(y+z x) p-(x+y z) q=x^{2}-y^{2}$
(c) Solve $\frac{\partial^{3} z}{\partial x^{3}}-7 \frac{\partial^{3} z}{\partial x \partial y^{2}}-6 \frac{\partial^{3} z}{\partial y^{3}}=\sin (x+2 y)$
7. (a) Use method of separation of variables to solve the equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial y}+2 u$
(b) Solve $u_{t}=a^{2} u_{x x}$ under the conditions $u(0, t)=0$, $\mathrm{u}(l, \mathrm{t})=0(\mathrm{t}>0)$ and initial condition $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(10-\mathrm{x})$, l being the length of the bar.
(c) A square plate is bounded by the lines $x=0, y=0, x=20$, $y=20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 20)=x(20-x)$ when $0<x<20$ while other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature in the plate.

