(Following Paper ID and Roll No. to be filled in your Answer Books)
Paper ID : 199222

B. TECH.

Theory Examination (Semester-II) 2015-16

ENGG MATHEMATICS-II

Time : 3 Hours
Max. Marks : 100

Section-A

Note: Attempt all questions of this section. $\quad(2 \times 10=20)$

1. (a) Find the roots of the auxiliary equation of the differential equation.
$\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}+9 y=4 e^{3 t}$
(b) Find the order and degree of the following differential equation
$\frac{d^{2} y}{d x^{2}}+\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}=0$

Also explain your answer.
(c) Find the values of m and n, if

$$
3 x^{2}=m \mathrm{P}_{2}(x)+n \mathrm{P}_{0}(x)
$$

(d) Write the statement of Rodrigue formula for Legendre function.
(e) Find Inverse Laplace Transform of the function

$$
f(s)=\frac{s}{2 s^{2}+8}
$$

(f) Find the Laplace transform of unit step function $u(t-a)$
(g) Find the value of the Fourier coefficient a_{0} for the function

$$
f(x)=\left\{\begin{array}{c}
0,-\pi<x<0 \\
x, 0<x<\pi
\end{array}\right.
$$

(h) Find the particular integral of the following partial differential equation

$$
\left(\mathrm{D}^{2}+\mathrm{DD}^{1}-6 \mathrm{D}^{12}\right) z=\cos (2 x+y)
$$

(i) Write two-dimensional heat equation.
(j) Classify the following partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Also explain your answer.

Section-B

2. Attempt any five questions from this section.

$$
(10 \times 5=50)
$$

(a) Solve the following simultaneous equations

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+y=\sin t \\
& \frac{d^{2} y}{d x^{2}}+x=\cos t
\end{aligned}
$$

(b) (i) Using variation of parameter method, solve

$$
x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-12 y=0
$$

(ii) Obtain the general solution of the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{3} e^{x}
$$

(c) Find the series solution of the following differential equation.

$$
2 x(1-x) \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}+3 y=0
$$

(d) State convolution theorem of Laplace transform and using it find :

$$
L^{-1}\left\{\frac{1}{\left(s^{2}+4\right)(s+2)}\right\}
$$

(e) Solve the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

in a rectangle in the $x y$-plane, $0 \leq x \leq a$ and $0 \leq y \leq b$ satisfying the following boundary conditions

$$
\begin{aligned}
& u(x, 0)=0, u(x, b)=0 \\
& u(0, y)=0 \text { and } u(a, y)=f(y)
\end{aligned}
$$

(4)
(f) Find the fourier series to represent the function $f(x)$ given by

$$
f(x)=\left\{\begin{array}{c}
-k \text { for }-\Pi<x<0 \\
k \text { for } 0<x<\Pi
\end{array}\right.
$$

Hence show that

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots \ldots \ldots .=\frac{\Pi}{4}
$$

(g) Show that

$$
\left.J_{n}(x)=\frac{1}{\Pi} \int_{0}^{\pi} \cos (n \varphi-x \sin \varphi) d \varphi\right),
$$

n being positive integer and $J_{n}(x)$ is Bessel function.
(h) Solve the following partial differential equation :

$$
\left(\mathrm{D}^{2}-\mathrm{DD}^{1}-2 \mathrm{D}^{12}+2 \mathrm{D}+2 \mathrm{D}^{1}\right) z=\operatorname{Sin}(2 x+y)
$$

where notations have their usual meaning.

Section-C

Note: Attempt any two questions from this section.
$(15 \times 2=30)$
3. (a) Solve $\left(\mathrm{D}^{2}-2 \mathrm{D}+1\right) y=e^{x} \sin x$
(b) Show that $\left(1-2 x z+z^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} z^{n} P_{n}(x)$
(c) Prove that

$$
\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)
$$

4. (a) Apply Laplace transform to solve the equation

$$
\frac{d^{2} y}{d t^{2}}+y=\mathrm{t} \cos 2 \mathrm{t}, \mathrm{t}>0
$$

given that $y=\frac{d y}{d t}=0 \quad$ for $\mathrm{t}=0$
(b) Find the Laplace transform of
(i) $L\left\{t^{2}\right\}$
(ii) $\mathrm{L}\{\cosh$ at.cos bt$\}$
(c) Solve the following differential equation

$$
\left(D^{3}-1\right) y=3 x^{4}-2 x^{3}
$$

5. (a) Solve the following partial differential equation

$$
\left(y^{2}+z^{2}\right) p-x y q+z x=0
$$

where p and q have their usual meaning.
(b) Find the Fourier series of

$$
f(x)=x^{3} \text { in }(-\Pi, \Pi)
$$

(c) Classify the following partial differential equation

$$
\left(1-x^{2}\right) \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+\left(1-y^{2}\right) \frac{\partial^{2} z}{\partial y^{2}}-2 z=0
$$

