Roll No. \square

RAS203

B.TECH.

THEORY EXAMINATION (SEM-IV) 2016-17

MATHEMATICS-II

Time : 3 Hours

Max. Marks : 70
Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION-A

1. Attempt any seven parts for the following:
$7 \times 2=14$
(a) Solve the differential equation $\frac{d^{2} y}{d x^{2}}=-12 x^{2}+24 x-20$ with the condition $\mathrm{x}=0, \mathrm{y}=$ 5 and $x=0, y=21$ ad hence find the value of y at $x=1$.
(b) For a differential equation $\frac{d^{2} y}{d x^{2}}+2 \alpha \frac{d y}{d x}+y=0$, find the value of α for which the differential equation characteristic equation has equal number.
(c) For a Legend polynomial prove that $P_{n}(1)=1$ and $P_{n}(-1)=(-1)^{n}$
(d) For the Bessel's function $\operatorname{Jn}(x)$ prove the following identities:
$J_{-n}(x)=(-1)^{n} J_{n}(x)$ and $J_{-n}(-x)=(-1)^{n} I_{n}(x)$
(e) Evaluate the Laplace transform of Integral of a function $L\left\{\int_{0}^{t} f(t / d t)\right\}$.
(f) Evaluate the value of integral $\int_{0}^{\infty} t . e^{-2 t} \operatorname{cost} d t$.
(g) Find the Fourier coefficient for the function $f(x)=x^{2} \quad 0<x<2 \pi$
(h) Find the partial differential equation of all sphere whose centre lie on Z -axis.
(i) Formulate the PDE by eliminating the arbitrary function from $\phi\left(x^{2}+y^{2}, y^{2}+z^{2}\right)=0$
(j) Specify with suitable example the clarification Partial Differential Equation (PDE) for elliptic, parabolic and hyperbolic differential equation.

SECTION - B

2. Attempt any three parts of the following questions:

$$
3 \times 7=21
$$

(a) A function $n(x)$ satisfies the differential equation $\frac{d^{2} n(x)}{d x^{2}}-\frac{n(x)}{L^{2}}=0$, where L is a constant. The boundary conditions are $n(0)=x$ and $n(\infty)=0$. Find the solution to this equation.
(b) Find the series solution by Forbenias method for the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+20 y=0
$$

(c) Determine the response of damped mass - spring system under a square wave given by the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=u(t-1)-u(t-2), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Using the Laplace transform.
(d) Obtain the Fourier expansion of $f(x)=x \sin x$ as cosine series in $(0, \pi)$ and hence show that

$$
\frac{1}{1 \times 3}-\frac{1}{3 \times 5}+\frac{1}{5 \times 7}-\ldots \ldots \ldots \ldots=\left(\frac{\pi-2}{4}\right)
$$

(e) Solve by method of separation of variable for PDE
$x \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(x, 0)=4 e^{-x}$

Attempt all parts of the following questions:
3. Attempt any two parts of the following:
(a) Find the particular solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+a^{1}=\sec a x
$$

(b) If $y=y_{1}(x)$ and $y=y_{2}(x)$ are two solutions of the equation $\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+$ $Q(x) y=0$, then show that $y_{1}\left(\frac{d y_{2}}{d x}\right)-y_{2}\left(\frac{d y_{1}}{d x}\right)=c e^{-\int P d x}$, where c is constant.
(c) Solve by method of variation of Parameter for the differential equation:
$\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+a y=\left(\frac{e^{3 x}}{x^{2}}\right)$
4. Attempt any two parts of the following:
(a) Prove that $\sqrt{\frac{\pi x}{2}} \cdot J_{3 / 2}(x)=\left(\frac{1}{x} \sin x-\cos x\right)$
(b) Show that Legendre polynomials are orthogonal on the interval $[-1,1]$
(c) Prove that $\int_{-1}^{+1} x P_{n}(x) d x=\frac{2 n}{4 n^{2}-1}$
5. Attempt any two parts of the following:
(a) Find the Laplace transform of $\mathrm{S}_{\mathrm{RW}}-$ tooth wave function
$F(t)=K t$ in $0<t<1$ with period 1
(b) Use Convolution theorem to find the inverse of function $F(s)=\frac{4}{s^{2}+2 s+5}$
(c) Solve the simultaneous differential equation, using Laplace transformation -
$\frac{d y}{d t}+2 x=\sin 2 t ; \frac{d y}{d t}-2 y=\cos 2 t$, where $x(0)=1, y(0)=0$
6. Attempt any two parts of the following:
(a) If $f(x)=\left[\frac{\pi-x}{2}\right]^{2}, \quad 0<x<2 \pi$ then show that $f(x)=\frac{\pi^{2}}{12}-\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n x$
(b) Find the complete solution of PDE
$\left(\Delta^{2}+7 \Delta D^{\prime}+12 D^{\prime 2}\right) / 2=\sin h x$, where symbols have their usual meaning.
(c) Solve the PDE $p+3 q=5 z+\tan (y-3 x)$
7. Attempt any one part of the following:
(a) A square plate is bounded by lines $x=0, y=0 ; x=20, y=20$. Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, 20)=x(20-x)$ when $0<x<20$ while the upper three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temperature.
(b) A bar of 10 cm long with insulated sides A and B are kept at $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. The temperature at A is then suddenly varies to $50^{\circ} \mathrm{C}$ and the same instant that at B bowered to $10^{\circ} \mathrm{C}$. Find the subsequent temperature at any point of the bar at any time.

CORRECTIONS $=$ RAS203

SECTION-A

Q 1
(a) Solve the differential equation $\frac{d^{2} y}{d x^{2}}=-12 x^{2}+24 x-20$ with the condition $x=0, y=5$ and $x=2, y=21$ ad hence find the value of y at $x=$ 1.
(b) For a differential equation $\frac{d^{2} y}{d x^{2}}+2 \alpha \frac{d y}{d x}+y=0$, find the value of α for which the differential equation characteristic equation has equal number of roots.
(e) Evaluate the Laplace transform of Integral of a function $\left.L\left\{\int_{0}^{t} f(t) \cdot d t\right)\right\}$.
SECTION-C
3. Attempt any two parts of the following:
(a) Find the particular solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x
$$

(c) Solve by method of variation of Parameter for the differential equation: $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=\left(\frac{e^{3 x}}{x^{2}}\right)$
5 Attempt any two parts of the following:
(a) Find the Laplace transform of SAW - tooth wave function
$\mathrm{F}(\mathrm{t})=\mathrm{Kt}$ in $0<\mathrm{t}<1$ with period 1
Attempt any two parts of the following:
(b) Find the complete solution of PDE
$\left(D^{2}+7 D D^{\prime}+12 D^{\prime 2}\right) z=\sin h x$, where symbols have their usual meaning.

