Printed Pages : 2

2.

B.TECH.

THEORY EXAMINATION (SEM-IV) 2016-17

MATHEMATICS-II

 Time : 3 Hours
 Max. Marks : 70

 Note : Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

1. Attempt any seven parts for the following:

- (a) Solve the differential equation $\frac{d^2y}{dx^2} = -12x^2 + 24x 20$ with the condition x = 0, y = 5 and x = 0, y = 21 ad hence find the value of y at x = 1.
- (b) For a differential equation $\frac{d^2y}{dx^2} + 2\alpha \frac{dy}{dx} + y = 0$, find the value of α for which the differential equation characteristic equation has equal number.
- (c) For a Legend polynomial prove that $P_n(1) = 1$ and $P_n(-1) = (-1)^n$
- (d) For the Bessel's function $J_n(x)$ prove the following identities: $J_{-n}(x) = (-1)^n J_n(x)$ and $J_{-n}(-x) = (-1)^n J_n(x)$
- (e) Evaluate the Laplace transform of Integral of a function $L\left\{\int_0^t f(t/dt)\right\}$.
- (f) Evaluate the value of integral $\int_0^\infty t. e^{-2t} cost dt$.
- (g) Find the Fourier coefficient for the function $f(x) = x^2 \quad 0 \le x \le 2\pi$
- (h) Find the partial differential equation of all sphere whose centre lie on Z-axis.
- (i) Formulate the PDE by eliminating the arbitrary function from $\phi(x^2 + y^2, y^2 + z^2) = 0$
- (j) Specify with suitable example the clarification Partial Differential Equation (PDE) for
- elliptic, parabolic and hyperbolic differential equation.

SECTION - B

Attempt any three parts of the following questions:

- (a) A function n(x) satisfies the differential equation $\frac{d^2n(x)}{dx^2} \frac{n(x)}{L^2} = 0$, where L is a constant. The boundary conditions are n(0) = x and $n(\infty) = 0$. Find the solution to this equation.
- (b) Find the series solution by Forbenias method for the differential equation $(1 x^2)y'' 2xy' + 20y = 0$
- (c) Determine the response of damped mass spring system under a square wave given by the differential equation

y'' + 3y' + 2y = u(t-1) - u(t-2), y(0) = 0, y'(0) = 0Using the Laplace transform.

(d) Obtain the Fourier expansion of $f(x) = x \sin x$ as cosine series in $(0, \pi)$ and hence show that

 $\frac{1}{1 \times 3} - \frac{1}{3 \times 5} + \frac{1}{5 \times 7} - \dots = \left(\frac{\pi - 2}{4}\right)$

(e) Solve by method of separation of variable for PDE

 $x\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, \ u(x,0) = 4e^{-x}$

RAS203

 $7 \times 2 = 14$

 $3 \ge 7 = 21$

1

Attempt all parts of the following questions:

3. Attempt any two parts of the following:

(b)

- (a) Find the particular solution of the differential equation
 - $\frac{d^2y}{dx^2} + a^1 = \sec ax$
 - If $y = y_1(x)$ and $y = y_2(x)$ are two solutions of the equation $\frac{d^2y}{dx^2}$.

$$\frac{dy}{dx^2} + P(x)\frac{dy}{dx} +$$

 $7 \times 5 = 35$

- Q(x)y = 0, then show that $y_1\left(\frac{dy_2}{dx}\right) y_2\left(\frac{dy_1}{dx}\right) = ce^{-\int Pdx}$, where c is constant. Solve by method of variation of Parameter for the differential equation :
- (c) Solve by method of variation of Parameter for the differential equation $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + ay = \left(\frac{e^{3x}}{x^2}\right)$

4. Attempt any two parts of the following:

(a) Prove that
$$\sqrt{\frac{\pi x}{2}} J_{3/2}(x) = \left(\frac{1}{x}\sin x - \cos x\right)$$

- (b) Show that Legendre polynomials are orthogonal on the interval [-1, 1]
- (c) Prove that $\int_{-1}^{+1} x P_n(x) dx = \frac{2n}{4n^2 1}$
- 5. Attempt any two parts of the following:
 - (a) Find the Laplace transform of S_{RW} tooth wave function
 - F(t) = Kt in 0 < t < 1 with period 1
 - (b) Use Convolution theorem to find the inverse of function $F(s) = \frac{4}{s^2 + 2s + 5}$
 - (c) Solve the simultaneous differential equation, using Laplace transformation $\frac{dy}{dt} + 2x = \sin 2t; \frac{dy}{dt} - 2y = \cos 2t$, where x (0) = 1, y (0) = 0
- 6. Attempt any two parts of the following:

(a) If
$$f(x) = \left[\frac{\pi - x}{2}\right]^2$$
, $0 < x < 2\pi$ then show that $f(x) = \frac{\pi^2}{12} - \sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$

(b) Find the complete solution of PDE

 $(\Delta^2 + 7\Delta D' + 12D'^2)/2 = \sin hx$, where symbols have their usual meaning.

- (c) Solve the PDE $p + 3q = 5z + \tan(y 3x)$
- 7. Attempt any one part of the following:
 - (a) A square plate is bounded by lines x = 0, y = 0; x = 20, y = 20. Its faces are insulated. The temperature along the upper horizontal edge is given by u(x, 20) = x(20 - x) when 0 < x < 20 while the upper three edges are kept at $0^{\circ}C$. Find the steady state temperature.
 - (b) A bar of 10 cm long with insulated sides A and B are kept at $20^{\circ}C$ and $40^{\circ}C$ respectively until steady state conditions prevail. The temperature at A is then suddenly varies to $50^{\circ}C$ and the same instant that at B bowered to $10^{\circ}C$. Find the subsequent temperature at any point of the bar at any time.

CORRECTIONS - RAS203

SECTION - A

Q 1

6

- (a) Solve the differential equation $\frac{d^2y}{dx^2} = -12x^2 + 24x 20$ with the condition x = 0, y = 5 and x = 2, y = 21 ad hence find the value of y at x = 1.
- (b) For a differential equation $\frac{d^2y}{dx^2} + 2\alpha \frac{dy}{dx} + y = 0$, find the value of α for which the differential equation characteristic equation has equal number of roots.
- (e) Evaluate the Laplace transform of Integral of a function $L\left\{\int_0^t f(t) dt\right\}$.

SECTION-C

- 3. Attempt any two parts of the following:
 - (a) Find the particular solution of the differential equation $\frac{d^2y}{dx^2} + \alpha^2 y = \sec \alpha x$
 - (c) Solve by method of variation of Parameter for the differential equation : $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \left(\frac{e^{3x}}{x^2}\right)$

5 Attempt any two parts of the following:

- (a) Find the Laplace transform of SAW tooth wave function F(t) = Kt in 0 < t < 1 with period 1
- Attempt any two parts of the following:
 - (b) Find the complete solution of PDE

 $(D^2 + 7DD' + 12D'^2)z = \sin hx$, where symbols have their usual meaning.