Roll No. \square

B. TECH.

(SEM II) THEORY EXAMINATION 2018-19
 \section*{MATHEMATICS-II}

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

QNo.	Question	Marks	CO
a.	Find the P.I of $\frac{d^{2} y}{d x^{2}}+4 y=\sin 2 x$	2	1
b.	Solve simultaneous equations $\frac{d x}{d t}=3 y, \frac{d y}{d t}=3 x$	2	1
c.	Find the volume of solid generated by revolving the circle $x^{2}+y^{2}=25$ about y-axis.	2	2
d.	Evaluate $\Gamma\left(-\frac{5}{2}\right)$. where Γ is gamma function	2	2
e.	Find the Fourier constant a_{1} of $f(x)=x^{2},-\pi \leq x \leq \pi$	2	3
f.	Discuss the convergence of sequence $a_{n}=\frac{2 n}{n^{2}+1}$.	2	3
g.	Show that complex function $f(z)=z^{3}$ is analytic.	2	4
h.	Define Conformal mapping.	2	5
i.	Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x$.	2	5
j.	Find residue of $f(z)=\frac{\operatorname{cosz}}{z(z+5)}$ at $z=0$	2	4

SECTION B

2. Attempt any three of the following:

QNo.	Question	Marks	CO
a.	Use Frobenius method to solve $9 x(1-x) \frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+4 y=0$	10	1
b.	Apply Dirichlet integral to find the volume of an octant of the sphere $x^{2}+y^{2}+z^{2}=25$.	10	2
c.	Find half range sine series of $f(x)=\left\{\begin{array}{cc}x & 0<x<2 \\ 4-x \quad 2<x<4\end{array}\right.$	10	3
d.	Show that $u=x^{4}-6 x^{2} y^{2}+y^{4}$ is harmonic function. Find complex function $f(z)$ whose u is a real part.	10	4
e.	Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in regions $(i) 1<\|z\|<2 \quad$ (ii) $2<\|z\|$	10	5

SECTION C

3. Attempt any one part of the following:

QNo.	Question	Marks	CO
a.	Solve $\frac{d^{2} y}{d x^{2}}+y=\tan x$ by method of variation of parameter.	10	1

b.	Solve $x^{2} \frac{d^{2} y}{d x^{2}}-2\left(x^{2}+x\right) \frac{d y}{d x}+\left(x^{2}+2 x+2\right) y=0$ by Normal Form.	10	1

4. Attempt any one part of the following:

QNo.	Question	Marks	CO
a.	Prove that $\beta(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$ where Γ is gamma function	10	2
b.	Use Beta and Gamma function to solve $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x \int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} d \theta$	10	2

5. Attempt any one part of the following:

QNo.	Question	Marks	CO
a.	Find the Fourier series of $f(x)=x \sin x,-\pi \leq x \leq \pi$	10	3
b.	State D' Alembert's test. Test the series $1+\frac{x}{2}+\frac{x^{2}}{5}+\frac{x^{3}}{10} \ldots \ldots+\frac{x^{n}}{n^{2}+1}+$ $\ldots \ldots \ldots \ldots$.	10	3

6. Attempt any one part of the following:

QNo.	Question	Marks	CO
a.	Let $f(z)=\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}}$ when $z \neq 0, \quad f(z)=0$ when $z=0$. Prove		
that Cauchy Riemann satisfies at $z=0$ but function is not differentiable			
at $z=0$.			

7. Attempt any one part of thê following:

QNo.	Question $D^{\text {a }}$	Marks	CO
a.	Using Cauchy Integral formula evaluate $\int_{c} \frac{\sin z}{\left(z^{2}+25\right)^{2}} d z$ where c is circle $\|z\|=8$	10	5
b.	Apply residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$	10	5

