Roll No: \square

BTECH

(SEM II) THEORY EXAMINATION 2021-22 EMERGING DOMAIN IN ELECTRONICS ENGINEERING

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

$$
2 * 10=20
$$

Qno	Questions	CO
(a)	Discuss the formation of depletion layer in diode.	1
(b)	Explain the effect of temperature on diode.	1
(c)	What is difference between BJT and JFET.	2
(d)	${\text { Determine } \beta_{\text {dc }} \text { and ICBO }, \text { If } \text { IE }=6 \mathrm{~mA}, \text { IC }=5.92 \mathrm{~mA} \text { and I ICEO }=200 \mathrm{~mA} .}_{2}^{2}$	2
(e)	What do you mean by CMRR in OP-AMP.	3
(f)	Which is better among microprocessor or microcontroller? Justify your answer with valid reason.	3
(g)	Determine base of the following: (i) (345) $10=(531)_{\mathrm{x}}($ (ii $)(2374)_{16}=(9076)_{\mathrm{x}}$	4
(h)	Write the truth table of two input X-OR gate and two input X-NOR gate.	4
(i)	Calculate the transmission efficiency if the modulation factor is 0.5.	5
(j)	Enlist the merits of satellite communication.	5

SECTIONB

2. Attempt any three of the following:

Qno	Questions	CO
(a)	Define Clamper. Determine output voltage for the given network.	1
(b)	Draw and explain common base N-P-N Transistor with its input and output characteristic graph. Also write an expression for output current.	2
(c)	Explain the concept of virtual ground in OP-AMP. Determine output Voltage for given network.	3
(d)	Perform following operation as indicated. (i) Determine 2 's complement of $(1010.110)_{2}$. (ii) Convert (25.125) ${ }_{10}$ into Hexadecimal number. (iii) Add binary number (1011)2 and (1111)2. (iv) State De Morgan's Law. (v) Define minterm and maxterm.	4
(e)	Explain Amplitude modulation. Derive the expression for the total power radiated by the modulated signal. Also calculate modulation efficiency.	5

Roll No: \square

BTECH

(SEM II) THEORY EXAMINATION 2021-22 EMERGING DOMAIN IN ELECTRONICS ENGINEERING

SECTION C

3. Attempt any one part of the following:
$10 * 1=10$

Qno	Questions	
(a)	In the bridge rectifier circuit, the secondary voltage Vs=100 sin50t and load resistance is $1 \mathrm{k} \Omega$. Calculate:(i) DC current(ii) RMS value of current (iii) Efficiency (iv) Ripple factor.	1
(b)	Determine and draw output voltage for given network.	

4. Attempt any one part of the following: $10 * 1=10$

Qno	Questions	CO
(a)	Explain the working of enhancement type MOSFET along with their transfer characteristics.	2
(b)	Describe the construction and working of P-Channel Depletion MOSFET, with characteristic graph. Also Justify that it is a yoltage controlled device.	2

5. Attempt any one part of the following: 10*1 = 10

| Qno | Questions | CO |
| :--- | :--- | :--- | :--- |
| (a) | Briefly explain:
 (i) OP-Amp as Non-Inverting Amplifier.
 (ii) Inverting summer.
 (iii) Blue Tooth and Wi-Fi Technology. | 3 |
| (b) | Enlist the characteristics of ideal OP-Amp. Also determine the output
 voltage of following circuit. | 3 |

Roll No: \square

BTECH

(SEM II) THEORY EXAMINATION 2021-22
EMERGING DOMAIN IN ELECTRONICS ENGINEERING
6. Attempt any one part of the following:

Qno	Questions	CO
(a)	Define universal logic Gates. Realize basic logic gates using NAND and NOR gates.	4
(b)	Simplify the function F(A, B,C,D) $=\Sigma \mathrm{m}(0,2,5,6,7,13,14,15)+\mathrm{d}(8,10)$ using K-map and implement the simplified function using NAND gates only.	4

7. Attempt any one part of the following: $10 * 1=10$

Qno	Questions	CO
(a)	Why do we need modulation? The antenna current of an AM transmitter is 8 A when only the carrier is sent, but it increases to 8.93 A, when the carrier is modulated by a single sine wave. Find percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8.	5
(b)	An Audio frequency signa10 Sin $6 \pi \times 400 \mathrm{t}$ is used to amplitude modulate a carrier of $25 \sin 4 \pi \times 10^{5}$ t. Calculate (i) Modulation Index (ii) Amplitude of each side band (iii) Total power delivered to the load of $2 \mathrm{~K} \Omega$ (iv) Bandwidth (v) Transmission efficiency	5

