Roll No:

\square

BTECH

(SEM II) THEORY EXAMINATION 2021-22
ENGINEERING PHYSICS
Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTIO	ON-A	rie	Marks(10X2=20)	CO
Q1(a) W	What is frame of reference in motion?			1
Q1(b) $\begin{aligned} & \text { S } \\ & \\ & \text { a }\end{aligned}$	Show that massless particles can exist only if the they move with the speed of light and their energy E and momentum p must have the relation $\mathrm{E}=\mathrm{pc}$.			1
Q1(c) $\begin{aligned} & \text { In } \\ & 0\end{aligned}$	In an electromagnetic wave, the electric and magnetic fields are $100 \mathrm{~V} / \mathrm{m}$ and $0.265 \mathrm{~A} / \mathrm{m}$. What is the maximum energy flow			2
Q1(d) D	Define the concept of Skin depth for high and low frequency waveforms.			
Q1(e) W	What is Compton effect and Compton shift?			
Q1(f) W	Why is black the best emitter?			
Q1(g) W	Why the center of Newton's ring in reflected system is dark?			
Q1(h) E	Explain Rayleigh's criterion of resolution.			
Q1(i) W	What do you mean by acceptance angle and cone for an optical fiber			
Q1(j) D	Differentiate spontaneous emission and stimulated emission.			5
-				
SECTIO	ON-B	Attempt ANY THREE of the following Questions	Marks($\mathbf{3 X 1 0}=\mathbf{3 0}$)	CO
Q2(a)	What is special theory of relativity? Derive Lorentz transformation equation.			
Q2(b) $\begin{aligned} & \text { A } \\ & \text { the } \\ & \text { d }\end{aligned}$	Assuming that all the energy from a 1000 watt lamp is radiated uniformly; calculate the average values of the intensities of electric and magnetic fields of radiation at a distance of 2 m from lamp.			2
Q2(c) $\begin{aligned} & \text { C } \\ & \text { for }\end{aligned}$	Calculate the energy difference between the ground state and the first excited state for an electron in a one-dimensional rigid box of length $25 \AA$.			3
Q2(d) ${ }^{\text {N }}$	Newton's rings are observed in reflected light of wavelength $5900 \mathrm{~A}^{0}$. The diameter of $10^{\text {th }}$ dark ring is 0.50 cm . Find the radius of curvature of the lens.			4
Q2(e) $\begin{aligned} & \text { A } \\ & \text { of } \\ & \text { a } \\ & \text { or }\end{aligned}$	A step index fibre has $\mu_{1}=1.466$ and $\mu_{2}=1.46$ where μ_{1} and μ_{2} are refractive indices of core and cladding respectively. If the operating wavelength of the rays is $0.85 \mu \mathrm{~m}$ and the diameter of the core $=50 \mu \mathrm{~m}$, calculate the cut-off parameter and the number of modes which the fibre will support.			5

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)	CO	
Q3(a)	What was the object of conducting Michelson-Morley experiment? Illustrate the experiment with proper diagram and necessary mathematical derivations. Also state the outcomes.	1
Q3(b)	Deduce Einstein's mass -energy relation $\mathrm{E}=\mathrm{mc}^{2}$. Give some evidence showing its validity.	1

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)	CO	
Q4(a)	Deduce the Maxwell's equations for free space and prove that electromagnetic waves are transverse in nature.	2
Q4(b)	Define radiation pressure and momentum of electromagnetic wave. Also determine an expression for radiation pressure and momentum.	2

Roll No

BTECH

(SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

SECTION-C Attempt ANY ONE following Question \quadMarks (1X10=10)		
Q5(a)	What is the physical significance of a wave function? Derive Schrodinger time independent wave equation.	3
Q5(b)	What is Compton effect? Deduce an expression for Compton shift.	3

| SECTION-C Attempt ANY ONE following Question | Marks (1X10=10) | CO |
| :--- | :--- | :---: | :---: |
| Q7(a) | A silicon optical fibre with a core diameter large enough has a core refractive index of 1.50
 and a cladding refractive index 1.47. Determine
 (i) the critical angle at the core cladding interface,
 (ii) the numerical aperture for the fibre
 (iii) the acceptance angle in air for the fibre. | 5 |
| Q7(b) | What do you mean by population inversion?
 laser system with the help of neat diagram. | Describe the principle and working of Ruby |

