

				Printed Page: 1 of 2						
				S	ubje	ect (Code	: K	AS2	01T
Roll No:										

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A		Attempt All of the following Questions in brief	Marks(10X2=20)	CO	
Q1(a)	What is fr	ame of reference in motion?		1	
Q1(b)	Show that	massless particles can exist only if the they move w	ith the speed of light	1	
	and their e	energy E and momentum p must have the relation E=	pc.		
Q1(c)	In an electromagnetic wave, the electric and magnetic fields are 100V/m and				
	0.265A/m. What is the maximum energy flow				
Q1(d)	Define the concept of Skin depth for high and low frequency waveforms.				
Q1(e)	What is C	ompton effect and Compton shift?		3	
Q1(f)	Why is bla	ack the best emitter?		3	
Q1(g)	Why the c	enter of Newton's ring in reflected system is dark?		4	
Q1(h)	Explain Rayleigh's criterion of resolution.				
Q1(i)	What do you mean by acceptance angle and cone for an optical fiber?				
Q1(j)	Differentia	ate spontaneous emission and stimulated emission.		5	

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO			
Q2(a)	a) What is special theory of relativity? Derive Lorentz transformation equation.						
Q2(b)	Assuming	that all the energy from a 1000 watt lamp is radiated	d uniformly; calculate	2			
the average values of the intensities of electric and magnetic fields of radiation at a							
	distance of 2m from lamp.						
Q2(c)	Calculate the energy difference between the ground state and the first excited state						
	for an elec	etron in a one-dimensional rigid box of length 25Å.	6				
Q2(d)	Newton's	rings are observed in reflected light of wavelength 5	900A ⁰ . The diameter	4			
	of 10 th dan	rk ring is 0.50cm. Find the radius of curvature of the	lens.				
Q2(e)	A step ind	lex fibre has $\mu_1 = 1.466$ and $\mu_2 = 1.46$ where μ_1 and μ_2	are refractive indices	5			
		d cladding respectively. If the operating wavelength					
	and the diameter of the core = $50 \mu m$, calculate the cut-off parameter and the number						
	of modes	which the fibre will support.					
	·		·				

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	What was	the object of conducting Michelson-Morley expe	eriment? Illustrate the	1
	experimer	at with proper diagram and necessary mathematical	derivations. Also state	
	the outcor	nes.		
Q3(b)	Deduce E	instein's mass –energy relation E= mc ² . Give some e	evidence showing its	1
	validity.	· ·	-	

SECT	TION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO			
Q4(a)	Deduce the Maxwell's equations for free space and pr	ove that electromagnetic	2			
	waves are transverse in nature.					
	Define radiation pressure and momentum of electromagnet	ic wave. Also determine	2			
	an expression for radiation pressure and momentum.					

				Subject Code: KAS201T						
Roll No:										

Printed Page: 2 of 2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q5(a)	What is t	he physical significance of a wave function? De	rive Schrodinger time	3
	independe	ent wave equation.		
Q5(b)	What is C	ompton effect? Deduce an expression for Compton s	hift.	3

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
	a diffracti resolving	ayleigh criterion of resolution how one can increase on grating? Using Rayleigh criterion for just res power of grating is equal to nN, where n is the orde no of lines on the grating.	olution show that the	
		ne phenomena of Fraunhofer diffraction at a single tensities of the successive maximum are nearly 1:		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
	A silicon o	optical fibre with a core diameter large enough has a core refra		5
		ding refractive index 1.47. Determine		
	` /	cal angle at the core cladding interface,		
		merical aperture for the fibre		κ'.
07(b)		ceptance angle in air for the fibre. You mean by population inversion? Describe the principle as	nd vyoulsing of Dyley	5
Q7(b)		m with the help of neat diagram.	nd working of Ruby	
			11/2	
		Q.Y		
		69:553		
		22		
		2		
		29.0		