TAS-302

percentage error, if $\frac{2}{3}$ is approximated to 0.6667.

Find the relative error, absolute error and

The function $f(x) = \tan^{-1}x$ can be expanded as (b)

 $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots$

find n such that the series determine $\tan^{-1}x$ correct to eight significant digits.

(c) Using Regula-Falsi method, compute the smallest positive root of the equation $xe^{x} - 2 = 0$, correct upto four decimal places.

1

Attempt any four parts of the following : (5x4=20)

- (iii) In case of numerical problems assume data wherever not provided.
- Note: (i) Answer ALL questions.

Be precise in your answer.

- (ii) All questions carry equal marks.

Printed Pages-4

Time : 3 Hours

(iv)

(a)

1.

220

(Following Paper ID an	nd Roll No. to	o be fill	led in yo	our Ans	wer Bo	nok)
PAPER ID:9967	Roll No.			11		

THIRD SEMESTER EXAMINATION, 2006 - 07

COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

B.Tech.

TAS-302

Total Marks : 100

- (d) Use Newton's Raphson method to find the smallest positive root of the equation $\tan x = x$.
- (e) Compute the rate of convergence of Newton-Raphson method.
- (f) Find the number of real and complex roots of the polynomial equation $x^4 4x^3 + 3x^2 + 4x 4 = 0$ using Sturm sequence.
- Attempt any four parts of the following : (5x4=20)
 (a) Compute f (27) from the following data using Lagrange's interpolation formula.

x :	14	17	31	35
(x):	68.7	64.0	44.0	.39.1

(b) Find the polynomial of degree four which takes the following values :

x	:	2	4	6	8	10
y	:	0	0	1	0	0

Obtain the Newton's divided difference interpolating polynomial and hence find f (6).

x: 3 7 9 10f(x): 168 120 72 63

- (d) Find the value of $\int_0^{\frac{\pi}{2}} \sqrt{1 0.162 \sin^2 x} \, dx$ using Simpson's one-third rule taking 6 sub-intervals.
 - (e) The velocity 'v' of a particle at distance 's' from a point on its linear path is given in the following table :

s (m):	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
v (m/sec):	16	19	21	22	20	17	13	11	2

Estimate the time taken by the particle to traverse the distance of 20 meters, using Boole's rule.

TAS-302

(c)

2

(f) Compute $\int_0^{\frac{\pi}{2}} \sin x \, dx$, using Simpon's three

eighth rule of integration, taking $h = \frac{\pi}{18}$.

3. Attempt any two parts of the following : (10x.
(a) Using Bessel's formula, compute the value

f (1.95) from the following data :

<i>x</i> :	1.7	1.8	1.9	2.0	2.1	2.2	1
f(x):	2.979	3.144	3.283	3.391	3.463	3.997	4.4

- (b) If y(10) = 35.3, y(15) = 32.4, y(20) = 29y(25) = 26.1, y(30) = 23.2 and y(35) = 20.5, for y(12) using Newton's forward as well backward interpolation formula. Also expl., why the difference (if any) in the result occur.
- (c) Find the values of f "(5) and f " (0.5) from the following table :

<i>x</i> :	0	1	2	3	4	5
f(x):	4930	5026	5122	5217	5312	5407

4. Attempt any two parts of the following : (10x2

(a) Find the value of y(1.1), using Runge-Kun method of fourth order, given that

 $\frac{dy}{dx} = y^2 + xy, y(1) = 1.0, \text{ take } h = 0.05$

(b) Given that $\frac{dy}{dx} = 1 + y^2$; y(0.6) = 0.684y(0.4) = 0.4228, y(0.2) = 0.2027, y(0) = 0. Fin y(-0.2), using Milne's predictor-correct method.

TAS-302

3

(c) Find y(0.1), using improved Euler's method and then y(0.2) by using modified Euler's method, given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \log\left(x+y\right), \ y(0) = 1.0$$

5. Attempt any two parts of the following : (10x2=20)

(a) Obtain cubic spline for every subinterval, given in the tabular form :

x :	0	1	2	3]
f(x):	1	2	33	244]

with the end conditions $M_0 = 0 = M_3$.

(b) Two variables x and y have zero means, the same variance σ^2 and zero correlation, show that :

 $u = (x \cos \alpha + y \sin \alpha)$ and

$$y = (x \cos \alpha - y \sin \alpha)$$

have the same variance σ^2 and zero correlation.

The data below given the number of defective bearing in samples of size 150. Construct np-chart for these data. If any points lie outside the control limits, assume that assignable cause can be found and determine the revised control limits:

Sample no. :	11	12	13	14	15	16	17	18	19	20
No. of defectives :	7	4	1	3	6	8	10	5	2	7

-000-

(c)

4