1	Prin	ted	Pages -	5
3	A A A	ucu	1 ages -	0

TCS-301

(Following Paper ID an				
PAPER ID:1064	Roll No.			

B.Tech.

THIRD SEMESTER EXAMINATION, 2006-07

DISCRETE STRUCTURE

Time : 3 Hours

Total Marks : 100

- Note: (i) Attempt ALL questions.
 - (ii) All questions carry equal marks.
 - (iii) Be precise in your answer.

1. Attempt *any four* parts of the following : (5x4=20)

- (a) (i) Show that for any two sets A and B $A (A \cap B) = A B$.
 - (ii) Give the power set of the set given below :A = {a, {b}}
- (b) (i) Let R be a binary relation defined as $R = \{ < a, b > \epsilon R^2 | a b \le 3 \}$ determine whether R is reflexive, symmetric, anti symmetric and transitive.
 - (ii) How many distinct binary relations are there * on the finite set A ?

(c) Let
$$X = \{1, 2, ..., 7\}$$
 and

 $R = \{ \langle x, y \rangle | x - y \text{ is divisible by 3} \}$

show that R is an equivalence relation.

TCS-301

1

Define a group. Let $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$ (c) and * denote "multiplication modulo 8 i.e. $x^*y = (xy) \mod 8.$

Write three distinct groups (G, *) where $G \subseteq S$ and G has two elements.

- (d) What do you mean by group homomorphism and group isomorphism ? Explain with example.
- If $(R, +, \bullet)$ is a ring with unity, then show that, (e) for all $a \in \mathbb{R}$.
 - (-1).a = -a(i)
 - (ii) $(-1) \cdot (-1) = 1$
- (f) Find the elements and the multiplication table of the symmetric groups S₃.
- 3. Attempt any four parts of the following :

(5x4=20)

- Define Poset. Give an example of a set X such (a) that (P (x), \subseteq) is a totally ordered set.
- (b) Let A be a given finite set and P (A) its power set. Let \subseteq be the inclusion relation on the elements of P (A). Draw the Hasse diagrams of (P (A), \subseteq) for $A = \{a, b, c\}.$
- (c) In the lattice defined by the Hasse given by the following figure :

How many complements does the elements 'e' have? Give all.

TCS - 301

- (d) List all possible functions from X = {a, b, c} to y = {0, 1} and indicate in each case whether the function is one to one, is onto and is one to one onto.
- (e) (i) Define an equivalence class generated by the elements of a set on a given equivalence relation.
 - (ii) Let F_x be the set of all one to one onto mapping from X onto X, where $X = \{1, 2, 3\}$. Find all the elements of F_x and find the inverse of each element.
- (f) State and prove Pigeon hole principle.
- 2. Attempt *any four* parts of the following : (5x4=20)
 - (a) Let (A, *) be a semigroup, further more for every a and b in A, if $a \neq b$, then $a*b \neq b*a$.
 - (i) Show that for every a in A

 $a^*a = a$

(ii) Show that for every a, b in A

a*b*a = a

- (iii) Show that for every a, b, c in Aa*b*c = a*c
- (b) Let G_1 and G_2 be sub group of a group G.
 - (i) Show that $G_1 \cap G_2$ is also a subgroup of G.
 - (ii) Is $G_1 \cup G_2$ always a subgroup of G?

TCS-301

- (d) Define a boolean function. For any x and y in a boolean algebra show that $\overline{x \lor y} = \overline{x} \land \overline{y}$.
- (e) Write the following Boolean expressions in an equivalent product of sums canonical form in three variables x_1 , x_2 and x_3 .
 - (i) $x_1^* x_2$
 - (ii) $x_1 \oplus x_2$
- (f) Define following terms :
 - (i) Rooted tree
 - (ii) Binary tree
 - (iii) Binary search tree

4. Attempt *any two* parts of the following : (10x2=20)

- (a) (i) What is difference between conditional and biconditional statements ? Explain with example.
 - (ii) Make a truth table for : $(P \rightarrow Q) \land (P \rightarrow R)$.
- (b) Show that the truth values of the following formulas are independent of their components.
 - (i) $(P \land (P \rightarrow Q)) \rightarrow Q$
 - (ii) $(P \rightarrow Q) \rightleftharpoons (TP \lor Q)$
 - (iii) $((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$
- (c) Show that given formula is a tautology

 $((P \lor Q) \land T (TP \land (TQ \lor TR))) \lor (TP \land TQ) \lor (TP \land TR)$.

TCS-301

4

5.

Attempt any two parts of the following :

(10x2=20)

(a) Solve the following recurrence relations :

(i)
$$a_{n+1} - 1.5 a_n = 0, n \ge 0$$

(ii)
$$a_n = 5a_{n-1} + 6a_{n-2}, n \ge 2, a_0 = a_1 = 3$$

- (b) Describe the 1-isomorphism and 2-isomorphism of the graph with example.
- (c) Write short notes on any two of the following :
 - (i) Complete bipartite graph
 - (ii) Hamiltonian paths and circuit
 - (iii) Chromatic number of a graph
 - (iv) Eular graphs

-000-