(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPERID: 2047

B.Tech

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 BASIC SYSTEM ANALYSIS

Time: 3 Hours]

[Total Marks: 100
1 Attempt any four parts of the following : 5×4
(a) What is difference between continuous and : \quad discrete time signals ? Explain with examples.
(b) Define unit step and unit impulse functions.
(c) Determine whether or not each of the following signals is periodic.
(i) $x_{1}(t)=2 e^{j(t+\pi / 4)} u(t)$
(ii) $x_{2}[n]=u[n]+u[-n]$
(d) Show that if $x_{1}[n]$ is an odd signal and $x_{2}[n]$ is an even signal, then $x_{1}[n] x_{2}[n]$ is an odd signal.
(e) Develop an analogous mechanical system for a series RLC circuit using Force-Voltage analogy.
2 Attempt any two parts of the following : $10 \times 2=20$
(a) Let $x(t)=\left\{\begin{array}{cc}t, & 0 \leq t \leq 1 \\ 2-t ; & 1 \leq t \leq 2\end{array}\right.$ be a periodic signal with fundamental period $T=2$ and Fourier coefficients a_{k}.
(i) Determine the value of a_{0}.
(ii) Determine the Fourier series representation of $\frac{d x(t)}{d t}$.
(iii) Use the result of part (ii) and the differentiation property of the continuous - time Fourier series to help determine the Fourier series coefficients of $x(t)$.
(b) Consider a causal LTI system implemented as the RLC circuit shown in the following figure. In this circuit, $e(t)$ is input voltage and $v_{c}(t)$ is considered as output.

(i) Find the differential equation relating $e(t)$ and $v_{c}(t)$.
(ii) Determine the $v_{c}(t)$ if $e(t)=\sin (t)$.
(c) What do you mean by Fourier analysis? What is Fourier transform? Explain the development of continuous time fourier-transform.

3 Attempt any two parts of the following:
(a) What do you understand by Laplace transform ? Distinguish between Laplace transform and continuous time Fourier transform. Discuss importannt properties of Laplace transform.

[Contd...
(b) The figure shows a staircase waveform Volts

(i) Write an equation for the waveform in terms of unit step functions.
(ii) If this voltage is applied to an RL series circuit with $R=1 \Omega$ and $L=1 H$, find the current $i(t)$ and sketch its waveform.
(c) Determine inverse Fourier transform of $F_{1}(s) F_{2}(s)$ by using convolution for the following functions :
(i) $\quad F_{1}=\frac{1}{(s-a)}, F_{2}=\frac{1}{(s-a)}$
(ii) $\quad F_{1}=\frac{1}{s+1}, \quad F_{2}=\frac{2}{s+2}$

4 Attempt any two parts of the following :
(a) Develop a state model for the circuit shown in the figure. The output is taken as the voltage across C_{2}.

JJ-2047]
(b) The differential equation of a certain electromechanical system is $\ddot{y}+3 \dot{y}+2 y=u(t)$, initial conditions $y\left(0^{+}\right)=0, \dot{y}\left(0^{+}\right)=0$. Use the state variable method to obtain the complete response of the system.
(c) Discuss the state variable analysis approach. Establish the relation between transfer function of a system and state variables.
5. Attempt any two parts of the following :
(a) Find the inverse Z-transform of the following :
(i) $x(z)=\frac{1}{1024}\left[\frac{1024-z^{-10}}{1-\frac{1}{2} z^{-1}}\right],|z|>0$

$$
\begin{equation*}
x(z)=\frac{1-\frac{1}{3} z^{-1}}{\left(1-z^{-1}\right)\left(1+2 z^{-1}\right)},|z|>2 \tag{ii}
\end{equation*}
$$

Define Z-transform. Give relationship between Z-transform and discrete-time Fourier transform. Dicsuss the important properties of ROCs for Z-transform.
(c) (i) Determine the system function for causal LTI system with difference equation

$$
y[n]=\frac{1}{2} y[n-1]+\frac{1}{4} y[n-2]=x[n]
$$

(ii) Using Z-transform, determine $y[n]$ if

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n] .
$$

