(Following Paper ID and Roll No. to be filled in your Answer Book)

B.Tech
(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 COMPUTER BASED NUMERICAL \& STATISTICAL TECHNIQUES

Note : (1) Attempt all questions.
(2) All questions carry equal marks.

1 Attempt any four parts of the following :
(a) Discuss two important computer arithmetic systems. lllustrate with examples that associatiative laws of floating point arithmetic do not hold in numerical computation.
(b) Derive the series: $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+$

Compute the number of terms required to estimate $\cos (\pi / 4)$ so that the result is correct to atleast two significant digits.
(c) In a triangle $\triangle A B C, a=6 \mathrm{~cm}, c=15 \mathrm{~cm}$, $\angle B=90^{\circ}$. Write a program in ' C ' to find the absolute error in the computed value of A, if possible errors in a and c are $1 / 5 \%$ and $1 / 7 \%$ respectively.
(d) Develop an iteration formula to find a real root of the equation : $x \sin x+\cos x=0$. Find it in the vicinity of $x_{0}=\pi$.
(e) Use the iteration method to find a real root of the equation : $3 x-\sqrt{1+\sin x}=0$ correct to five decimal places.
(f) Use Muller's method to obtain a root of the equation: $\cos x-x e^{x}=0$ in the interval $(0,1)$

2 Attempt any four parts of the following :
(a) Prove : $\Delta-\nabla=-\Delta \nabla$
(b) Estimate the missing term in the table :

x	0	1	2	3	4
$f(x)$	1	3	9	$?$	81

(c) Apply Stirling's formula to find a polynomial of degree three which takes the following values of x, y :

x	2	4	6	8	10
y	-2	1	3	8	20

(d) Write an algorithm of any central difference interpolation formula.
(e) Apply Langrange's formula to find a cubic polynomial which approximates the data:

x	-2	-1	2	3
$y(x)$	-12	-8	3	5

(f) A function $f(x)$ satisfies the conditions : $f(0)=1$, $f^{\prime}(0)=1, \quad f(1)=0, \quad f^{\prime}(1)=0$. Use Hermite interpolation to approximate $f(x)$ by a polynomial. Also evaluate the maximum value of $f(x)$ in $[0,1]$.

3 Attempt any two parts of the following
(a) State the importance of numerical differentiation. Find $f^{\prime}(0.6)$ and $f^{\prime \prime}(0.6)$ from the following table :

x	0.4	0.5	0.6	0.7	0.8
$f(x)$	1.5836	1.7974	2.0442	2.3275	2.6510

(b) State the need and scope of numerical integration. Use Simpson's rule to estimate the integral. $\int_{0}^{2} e^{x^{2}} d x$ with a stepsize 0.5 .
(c) The area A inside the closed curve. $y^{2}+x^{2}=\cos x$ is given by $A=4 \int_{0}^{\alpha}\left(\cos x-x^{2}\right)^{1 / 2} d x$ where α is the positive root of the equation $\cos x=x^{2}$. Compute the area with an absolute error less than 0.05 .

Attempt any two parts of the following
(a) Apply Runge-Kutta fourth order method to find $y(0.1), y(0.2)$ and $y(0.3)$ for the initial value problem. $\frac{d y}{d x}=x y+y^{2}, y(0)=1$. Also, find $y(0.4)$ using Adam's method.
(b) Solve the initial value problem :
$y^{\prime}=x+\sin (\pi y) ; y(1)=0,1 \leq x \leq 2$ by Milne's predictor-corrector method.
(c) Discuss the stability of Euler's method applied to the initial value problem. $y^{\prime}=\lambda y, y\left(x_{0}\right)=y_{0}$.

5 Attempt any two parts of the following
(a) State various methods for curve-fitting. Obtain the cubic splines approximation for the function given by the following table :

x	0	1	2	3
$f(x)$	1	2	5	11

with the end conditions $M_{0}=0=M_{3}$.
(b) State objectives of control charts. A drilling machine bores holes with a mean diameter of 0.5230 cm and a standard deviation of 0.0032 cm . Calculate the 2 -sigma and 3 -sigma upper and lower control limits for means of sample of 4 .
(c) Define lines of regression. Find the lines of regression for the given data :

x	50	100	150	200	250	300	350
y	30	65	90	130	150	190	200

Also find the coefficient of correlation for the above data.

