

B.Tech

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 COMPUTER BASED NUMERICAL & STATISTICAL TECHNIQUES

Time: 3 Hours]

1 .2

[Total Marks: 100

Note : (1) Attempt all questions.

(2) All questions carry equal marks.

- 1 Attempt any four parts of the following :
 - (a) Discuss two important computer arithmetic systems. Illustrate with examples that associatiative laws of floating point arithmetic do not hold in numerical computation.

(b) Derive the series :
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Compute the number of terms required to estimate $\cos(\pi/4)$ so that the result is correct to atleast two significant digits.

(c) In a triangle $\triangle ABC$, $a = 6 \ cm$, $c = 15 \ cm$, $\angle B = 90^{\circ}$. Write a program in 'C' to find the absolute error in the computed value of A, if possible errors in a and c are 1/5% and 1/7% respectively.

1

JJ-9967]

[Contd...

- (d) Develop an iteration formula to find a real root of the equation : x sin x + cos x = 0. Find it in the vicinity of x₀ = π.
- (e) Use the iteration method to find a real root of the equation : $3x \sqrt{1 + \sin x} = 0$ correct to five decimal places.
- (f) Use Muller's method to obtain a root of the equation : $\cos x - x e^x = 0$ in the interval (0, 1).
- 2 Attempt any four parts of the following :
 - (a) Prove : $\Delta \nabla = -\Delta \nabla$
 - (b) Estimate the missing term in the table :

x	0	1	2	3	4
f(x)	1	3	9	?	81

(c) Apply Stirling's formula to find a polynomial of degree three which takes the following values of x, y :

x	2	4	6	8	10
y	-2	1	3	8	20

- (d) Write an algorithm of any central difference interpolation formula.
- (e) Apply Langrange's formula to find a cubic polynomial which approximates the data :

x	-2	-1	2	3
y(x)	-12	-8	-3	5

JJ-9967]

[Contd...

(f) A function f(x) satisfies the conditions : f(0) = 1,
f'(0) = 1, f(1) = 0, f'(1) = 0. Use Hermite interpolation to approximate f(x) by a polynomial. Also evaluate the maximum value of f(x) in [0, 1].

Attempt any two parts of the following :

3

(a) State the importance of numerical differentiation. Find f'(0.6) and f''(0.6) from the following table :

λ		0.4	0.5	0.6	0.7	0.8
f(x)	1.5836	1.7974	2.0442	2.3275	2.6510

(b) State the need and scope of numerical integration. Use Simpson's rule to estimate the integral.

 $\int_0^2 e^{x^2} dx$ with a stepsize 0.5.

(c) The area A inside the closed curve. $y^2 + x^2 = \cos x$

is given by $A = 4 \int_0^{\alpha} (\cos x - x^2)^{\frac{1}{2}} dx$ where α is

the positive root of the equation $\cos x = x^2$. Compute the area with an absolute error less than 0.05.

- Attempt any two parts of the following :
- (a) Apply Runge-Kutta fourth order method to find y(0.1), y(0.2) and y(0.3) for the initial value

problem. $\frac{dy}{dx} = xy + y^2$, y(0) = 1. Also, find y(0.4) using Adam's method.

JJ-9967]

[Contd...

- (b) Solve the initial value problem : y' = x + sin(πy); y(1) = 0, 1 ≤ x ≤ 2 by Milne's predictor-corrector method.
- (c) Discuss the stability of Euler's method applied to the initial value problem. $y' = \lambda y$, $y(x_0) = y_0$.
- Attempt any two parts of the following :

5

 (a) State various methods for curve-fitting. Obtain the cubic splines approximation for the function given by the following table :

x	0	1	2	3
f(x)	1	2	5	11

with the end conditions $M_0 = 0 = M_3$.

- (b) State objectives of control charts. A drilling machine bores holes with a mean diameter of 0.5230 cm and a standard deviation of 0.0032 cm. Calculate the 2-sigma and 3-sigma upper and lower control limits for means of sample of 4.
- (c) Define lines of regression. Find the lines of regression for the given data :

x	50	100	150	200	250	300	350
y	30	65	90	130	150	190	200

Also find the coefficient of correlation for the above data.

[4475]

1