(Following Paper ID and Roll No. to be filled in your Answer Book)

DAPER 1B: 1065

Roll No.

B. Tech

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 DATA STRUCTURE USING 'C'

Time: 3 Hours]

Note : (1) Attempt all questions.
(2) All parts of a question should be attempted at same place.

1 Attempt any four parts of the following : $\mathbf{5 \times 4 = 2 0}$
(a) Define data structure. Write down the difference between 'logical' and 'physical' structure of data using a suitable example.
(b) Write a program in ' C ', that counts total number of 'words' in a given input text.
(c) Suppose you have an array to numbers denoted by num []. Write the iterative and recursive . procedure to find the sum of 500 numberss Compare the time and space-requirement of both algorithms.
(d) Write down algorithm for evaluation of postfix expression using stack.
(e) Each element of an array X [30] [50] requires 4 bytes of storage. Base address of X is 2500 . Determine the location of $\mathrm{X}[10][10]$ when the array is stored as
(i) Row major
(ii) Column major
(f) Explain divide and conquer method and apply it on the merge sort using some example.

2 Attempt any four parts of the following : $\mathbf{5 \times 4 = 2 0}$
(a) You are given two polynomials. Represent the polynomials in a suitable data structure and write an algorithm to add the two polynomial functions.
(b) Suppose LIST is a circular list in memory. Write an algorithm which deletes the last node from LIST.
(c) Implement a queue as a linked list. Write algorithm for performing insertion and deletion in it.
(d) Show, how a priority queue can be implemented using linked list.
(e) Given a queue and an empty stack, write a function that uses the stack to reverse the order of all items in the queue.
(f) Write algorithm to add an item to each end of a dequeue.

2

Attempt any two parts of the following :
(a) Write down the 'iterative' and 'recursive' algorithms for In order traversal of a binary tree. What is the run-time of the algorithms ?
(b) (i) Write a ' C ' function that accepts a pointer to a binary tree and a pointer to a node of the tree and returns the level of the node in the tree.
(ii) Consider the following algebraic expression :
$E=(2 x+y)(5 a-b)^{3}$
Draw the tree T which corresponds to expression E.
(c) What is hashing ? Give the characteristics of hash function. What are different methods of handling overflow in hashing ?

Attempt any two parts of the following
$10 \times 2=20$
(a) (i) Write an algorithm for sorting a set of
numbers in descending order using selection sort. Analyse the algorithm.
(ii) Illustrate the operation of HEAP-SORT on the following array

$$
A=\langle 5,13,2,25,7,17,20,8,4\rangle
$$

(b) (i) Define B tree. Explain the insertion operation of B tree with example. What are the applications of B-tree ?
(ii) Insert the following keys, in the order shown, to build them into an AVL tree

$$
\mathrm{M}, \mathrm{~T}, \mathrm{E}, \mathrm{~A}, \mathrm{Z}, \mathrm{G}, \mathrm{P}
$$

(c) Suppose a graph G is input by means of an integer M , representing the nodes $1,2 \ldots . \mathrm{M}$ and a list of N ordered pairs of integers, representing the edges of G .

Write a program in C language to find the adjacency matrix of graph G .

5 Write short notes on any four of the $5 \times 4=20$ following :
(i) Sparse Matrices and their applications
(ii) Kruskal's algorithm
(iii) Tower of Hanoi problem
(iv) Time-space trade-off with suitable examples
(v) Principles of recursion with example
(vi) Garbage collection and compaction.

