(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER D: 0111 Roll No.

B. Tech
(SEM HI) ODD SEMESTER THEORY EXAMINATION 2009-10 DISCRETE MATHEMATICAL STRUCTURES

Time: 3 Hours]
[Total Marks : 100

Note : (i) Answer all questions.
(ii) All questions carry equal marks.

1 Attempt any four parts
(a) Let A be a set with 10 distinct elements.

Determine the following :
(i) Number of different binary relations on A
(ii) Number of different symmetric binary relations on A
(b) Suppose S and T are two sets and f is a functions from S to T. Let R_{1} be an equivalence relation on T. Let R_{2} be a binary relation on S such that $(x, y) \in \boldsymbol{R}_{\mathbf{2}}$ if and only if $(f(x), f(y)) \in \boldsymbol{R}_{1}$. Show that \boldsymbol{R}_{2} is also an equivalence relation.
(c) Prove that union of two countably infinite set is countably infinite.
(d) Composition of functions is commutative. Prove the statement or give counter example.
(e) Prove that for any integer $n>1$,

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots \ldots+\frac{1}{\sqrt{n}}>\sqrt{n} .
$$

(f) What do you understand by asymptotic behaviour of a numeric function ? Explain Big-Oh and Big-Omega notation.

2 Attempt any two parts
(a) (i) Define group. Prove that if every element of a group G is its own inverse then G is abelian group.
(ii) Prove that $\left(\mathbb{Z}_{p}, X_{p}\right)$ is a group
where the set \mathbb{Z}_{p} is the set of all non-zero residue classes modulo $\boldsymbol{p}, \boldsymbol{p}$ is a positive prime number and X_{P} denotes the multiplication of residue classes modulo \boldsymbol{p}.
(b) (i) Prove the following or give counter example :

If $\left(H_{1}, *\right)$ and $\left(H_{2}, *\right)$ are both subgroups of the group $(G, *)$ then $\left(H_{1} \cup H_{2}, *\right)$ is also a subgroup of $(G, *)$.
(ii) State and prove Lagrange theorem.
(c) (i) Define and explain the following with suitable example
(a) Cyclic group
(b) Zero divisor of a ring
(c) Order of an element of a group (d) Field.
(ii) If \boldsymbol{G} is a group of order \boldsymbol{n} then order of any element $a \in \boldsymbol{G}$ is a factor of n. Prove.

Answer any two parts
(a) (i) Define a relation R on the set \mathbb{Z} of all integers by $\boldsymbol{m} \boldsymbol{R}_{\boldsymbol{n}}$ if and only if $m^{2}=n^{2}$. Determine whether R is a partial order or not?
(b) (i) Prove the following or give counter example :

If $\left(H_{1}, *\right)$ and $\left(H_{2}, *\right)$ are both subgroups of the group $(G, *)$ then $\left(H_{1} \cup H_{2}, *\right)$ is also a subgroup of $(G, *)$.
(ii) State and prove Lagrange theorem.
(c) (i) Define and explain the following with suitable example :
(a) Cyclic group
(b) Zero divisor of a ring
(c) Order of an element of a group (d) Field.
(ii) If \boldsymbol{G} is a group of order \boldsymbol{n} then order of any element $a \in \boldsymbol{G}$ is a factor of n. Prove.

Answer any two parts :
(a) (i) Define a relation \boldsymbol{R} on the set \mathbb{Z} of all integers by $\boldsymbol{m} \boldsymbol{R}_{\boldsymbol{n}}$ if and only if $m^{2}=n^{2}$. Determine whether \boldsymbol{R} is a partial order or not ?
(ii) Let (A, \leq) and (B, \leq) be two posets. Prove that $(A \times B, \leq)$ is a poset, where $(a, b) \leq(c, d)$ if and only if $a \leq c, b \leq d$.
(iii) Draw the Hasse diagram of (A, \leq) where

$$
A=\{3,4,12,24,48,72\}
$$

and the relation \leq be such that $a \leq b$ if a divides b.
(b) (i) Define distributive lattice and complemented lattice. Prove that in a distributive lattice, if an element has a complement then this complement is unique.
(ii) Let

$$
E\left(x_{1}, x_{2}, x_{3}\right)=\overline{\overline{\left(x_{1} \vee x_{2}\right)} \vee\left(\bar{x}_{1} \wedge x_{3}\right)}
$$

be a boolean expression over the two valued boolean algebra. Write $E\left(x_{1}, x_{2}, x_{3}\right)$ in disjunctive normal form.
(c) (i) Let a, b, c be elements in a lattice (A, \leq). Show that if $a \leq b$ then
$a \vee(b \wedge c) \leq b \wedge(a \vee c)$.
(ii) Simplify boolean function F given by
$F(A, B, C, D)=\sum(0,2,7,8,10,15)$
using Karnaugh map.

4 Answer any two parts
(a) (i) Given that the value of $p \rightarrow q$ is false, determine the value of $(\bar{p} \vee \bar{q}) \rightarrow q$.
(ii) Find a formula A that uses the variable p, q and r such that A is a contradiction.
(iii) Write an equivalent formula for
$p \wedge(q \leftrightarrow r) \vee(r \leftrightarrow p)$
which neither contains
biconditional nor conditional
connectives.
(iv) The contrapositive of a statement S is given as "If $\boldsymbol{x}<\mathbf{2}$ then $x+4<6$ " . write the statement S and its converse.
(b) (i) Prove that $(p \vee q) \Rightarrow(p \wedge q)$ is logically equivalent to $p \Leftrightarrow \boldsymbol{q}$.
(ii) Translate the following sentences in quantified expressions of predicate logic.
(a) all students need financial aid.
(b) Some students need financial aid.
(c) (i) Show that following are not equivalent :
(a) $\forall x(P(x) \rightarrow Q(x))$ and $\forall x P(x) \rightarrow \forall x Q(x)$
(b) $\forall x \exists y P(x, y)$ and

$$
\exists y \forall x \quad P(x, y)
$$

(ii) Show that
$r \rightarrow \sim q, r \vee s, s \rightarrow \sim q, p \rightarrow q$
$\Leftrightarrow \sim p$ are inconsistent.

Answer any two parts
(a) (i) Find the simple expression for the generating function of following discrete numeric function

$$
1, \frac{2}{3}, \frac{3}{9}, \frac{4}{27}, \ldots \ldots . \frac{(r+1)}{3^{r}}, \ldots \ldots \ldots
$$

(ii) Solve the recurrence relation

$$
a_{r}-6 a_{r-1}+8 a_{r-2}=r \cdot 4^{r}
$$

given $a_{0}=8, a_{1}=22$.
(b) (i) Find the number of integer solutions of the equation
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=30$
where $\quad x_{1} \geq 2, x_{2} \geq 3, x_{3} \geq 4$,

$$
x_{4} \geq 2, x_{5} \geq 0
$$

(ii) Given the in order and post order traversal of a tree T

In order: BEHFACDGI
Post order : HFEABIGDC
Determine the tree T and its pre order.
(c) (i) Prove that for any connected planar graph, $V-e+r=2$
where v, e, r are the number of vertices, edges and regions of the graph respectively.
(ii) Define and explain the following :
(a) Bipartite graph
(b) Chromatic number of a graph
(c) Binary search tree
(d) Adjacency matrix of a graph.

