

Attempt any four parts of the following :

(a) The cable shown in Fig. 1, is 10 km long. If $r_1 = 10 \text{ mm}$, $r_2 = 15 \text{ mm}$, $r_3 = 20 \text{ mm}$, $\epsilon r_1 = 2.0$, $\epsilon r_2 = 4.0$. Find the capacitance of the cable.

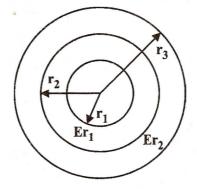


Fig. 1

- (b) If the current density $J = \frac{1}{r^2} (\cos \theta a_r + \sin \theta a_\theta)$, A/m², find the current passing through a sphere radius of 1.0 m.
- (c) If a potential $V = x^2yz + Ay^3z$, (i) find A so that Lapace's equation is satisfied (ii) with the value of A, determine electric field at (2, 1, -1)
- (d) State and explain the poisson's and Laplace's equation.
- (e) State and explain the coulomb's law.
- (f) A sphere of volume 0.1 m^3 has a charge density of 8.0 pc/m³. Find the electric field at a point (2, 0, 0) if the centre of the sphere is at (0, 0, 0).

JJ-0324] 2

[Contd...

2

Attempt any two parts of the following :

3

4

- (a) State and explain the Biot-Savrat law. What is the magnetic field, H in cartesian coordinates due to Z-directed current element ? Find J if I = 2 A.
- (b) State and explain the Stokes theorem. When vector magnetic potential is given by

 $A = \frac{1}{r^3} (2.0 \cos \theta \, a_r + \sin \theta \, a_\theta), \text{ find the magnetic}$ flux density.

(c) An isotropic material has a magnetic susceptibility of 3 and the magnetic flux density, $B = 10ya_x$ mwb/m². Determine μ , ρ_n , *J*, *M* and *H*. Define inductance, mutual inductance and coefficient of coupling.

Attempt any two parts of the following :

- (a) State and explain the Maxwell's equation in differential and integral form. Also define the displacement currrent and depth of penetration.
- (b) Derive the relation between \overline{E} and \overline{H} in uniform plane wave.
- (c) Derive the expression for α and β in a conducting medium.

JJ-0324]

[Contd...

- Attempt any two parts of the following :
 - (a) By using Smith chart, find the input impedance of 75 Ω lossless transmission line of length 0.1 λ . when the load is a short.
 - (b) The short circuit and open circuit impedance of 10 km long open wire transmission line are Z_{sc} = 2930 ∠ 26° and Z_{oc} = 260 ∠ - 32° at frequency of 1 kHz. Calculate the characteristics impedance and phase velocity.
- (c) Define reflection loss, transmission loss and return loss. The 600 Ω lossless transmission line is feeded by 50 Ω generator. If the line is 200 meter long and termintated by load 500 Ω. Determine in db (i) reflection loss (ii) Transmission 1083 (iii) return loss.

JJ-0324]

-