

Printed Pages: 3

TME301

(Following Paper ID and Roll No.	. to be filled in your Answer Book)
PAPER ID: 4068 Roll No.	

B. Tech

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 MATERIAL SCIENCE

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions:

1 Answer any two of the following:

 $10 \times 2 = 20$

- (a) Describe following types of primary and secondary bonding:
 - (i) Ionic
 - (ii) Covalent
 - (iii) Metallic
 - (iv) Flucluating dipole
 - (v) Permanent dipole
- (b) Find for SC, BCC and FCC crystals; number of atoms per unit cells, relationship between atomic size and lattice parameter and atomic packing fraction.
- (c) Enlist Bravais crystal system. Also briefly describe X-ray crystallography methods.

2 Answer any two of the following:

 $10 \times 2 = 20$

(a) Enumerate the purpose for which a microscopic examination is required. Describe the method of determining grain size of a metal.

- (b) Briefly describe:
 - (i) Hardness testings and
 - (ii) Impact testings
- (c) Describe Griffith's theory of briltle fracture. Obtain the expression for fracture stress in glass.
- Answer any two of the following:

 $10 \times 2 = 20$

- (a) Draw Fe-Fe₃C phase (equilibrium) diagram and label the phase fields. Discuss in brief the different reactions that take place in this system.
- (b) Describe Heat-treatment processes and its usefulness.
- (c) Mention the composition, properties and applications of the following:
 - (i) Stainless steels
 - (ii) HSS
 - (iii) Gun metal
 - (iv) Duralumin
 - (v) Ferritic
 - (vi) Martensitic

- Answer any two of the following:
 - (a) Briefly describe the types of semiconductors, its devices and its applications.
 - (b) What is superconductivity? What are the properties of superconductors. Draw the curve of resistivity versus temperatures for normal metal and superconductors. Also, write applications of superconductors.
 - (c) Define magnetostatic energy. How can be magnetostatic energy of a ferromagnetic material be minimized with respect to magnetic dipole alignment?
- 5 Write short notes on any four:

5×4=20

 $10 \times 2 = 20$

- (a) Addition polymerization and condensation polymerization
- (b) Particulate composites
- (c) Mechanical behaviour of ceramics
- (d) Future of plastics
- (e) Creep curve
- (f) Corrosion and its control.